Technical Report

TESTBED DEVELOPMENT AND UTILIZATION

EXECUTIVE SUMMARY

The Naval Air Warfare Center Training Systems Division (NAWCTSD) has conducted a coordinated program of research to address the application of virtual environments to training. The purpose of the Virtual Environment Training Technology (VETT) program was to develop, demonstrate, and evaluate virtual environment technology for training applications. The VETT program included five primary work areas: (1) VETT Enabling Research for the Human Operator (ERHO); (2) Haptic Interface Design and Evaluation; (3) VETT Side Effects R&D; (4) Training Effectiveness Research; and (5) Testbed Development and Utilization.

This chapter describes the research conducted under the VETT Testbed Development and Utilization work area. The objective of this work was to develop a core testbed facility to serve as a research platform for the VETT project.

INTRODUCTION

The overall objective of the VETT program was to determine the potential of VE training and to develop experimental facilities for assessing and realizing this potential (Zeltzer, Aviles, Gupta, Lee, Nygren, Pfautz, Pioch, & Reid, 1995). The development of a reconfigurable testbed facility was a major thrust of this effort. The core testbed facility was designed to support the experimental work of the VETT satellite research groups and to serve as a platform for evaluating a broad range of VE training systems. Zeltzer et al. summarize the goals of this effort:

1. To explore and understand the practical and fundamental issues associated with assembling a general-purpose, multi-modal VE system utilizing currently available hardware and software technologies.

2. To develop and assemble the architectural tools required for integrating VE systems.

3. To conduct experimental research on human sensorimotor cognitive behavior, including experiments focused on the behavior of trainees in simple VE tasks representative of more general Naval training tasks.

4. To provide a highly modular testbed facility for the integrated and system-level testing, evaluation and application of VE tools, technologies, and knowledge gained through efforts elsewhere in the VETT program and in the VE community as a whole.

The initial phases of the testbed project focussed on the procurement, installation and testing of the major computation and interface components. Subsequent research entailed the implementation and evaluation of specific training applications.

Project Background

The Naval Air Warfare Center Training Systems Division (NAWCTSD) has conducted a coordinated program of research to address the application of virtual environments to training. The purpose of the Virtual Environment Training Technology (VETT) program was to develop, demonstrate, and evaluate virtual environment technology for training applications. The VETT program included five primary work areas: (1) VETT Enabling Research for the Human Operator (ERHO); (2) Haptic Interface Design and Evaluation; (3) VETT Side Effects R&D; (4) Training Effectiveness Research; and (5) Testbed Development and Utilization.

This chapter describes the research conducted under the VETT Testbed Development and Utilization work area. The VETT Testbed Development and Utilization research was performed by researchers from Massachusetts Institute of Technology. Project results were reported in two technical reports, Zeltzer, Aviles, Gupta, Lee, Nygren, Pfautz, Pioch, and Reid (1995) and Durlach, Wiegand, Zeltzer, Srinivasan, Salisbury, Brock, Sachtler, Pfautz, Schloerb, and Lathan (1996).

Outline of this Chapter

The primary objective of this work was the development of a core testbed facility to support the experimental work of the VETT satellite research groups and to serve as a platform for evaluating a broad range of VE training systems. Accordingly, this chapter is organized into four major sections:

Section 1: Introduction

Section 2: Testbed Development

Section 3: Training Application

Section 4: Evaluation

TESTBED DEVELOPMENT

This section provides information about the design and development of a multi-modal VE training testbed. The testbed was developed to support the experimental work of satellite VETT projects, specifically the sensorimotor and haptics research areas. In preparation for future applications, all testbed components were installed and tested according to proposed requirements. The major computational equipment and interface components of the testbed facility are listed below. (Please refer to endnotes for a detailed summary of each area.)

· Testbed Architecture1 consists of three primary elements: physical interfaces, logical interfaces, and models and processes. (For a catalog of system hardware2 and software,3 please refer to endnotes.)

· Physical Interfaces:

Sensor Modules4 represent the collection of interface devices used to measure sensorimotor input.

Display Modules5 consist of a collection of output devices for conveying audio, visual, and haptic stimuli.

· Logical Interfaces:6

The Developers' Interface7 refers to the human/machine interface which mediates the major elements of the VE system and allows for the creation of interactive simulations.

The Experimenters’ Interface8 (EI) is a user-friendly software program designed to facilitate researchers' use of the testbed facility. (For detailed treatment of the Experimenter's interface, refer endnotes: Need for EI,9 EI Design,10 and Advantages & Disadvantages of EI.11)

· VETTnet Blackboard12 is a networked database that allows data to be shared between all VE system components.

· Audio Server, Speech Server, and Sound Spatializers13 were designed to support the unique requirements of the multi-modal VE training system.

· The core testbed was equipped with DIS Capability.14
· Hark Voice Recognition Software15 was purchased from BBN and integrated into the VE core testbed. The BBN software recognizes verbal input in less than two seconds, and maintains a voice recognition rate of 90% or above.

· SGI Performer Graphics Software16 was used to generate the graphics scene within the VE environment. The graphics code was reimplemented to meet the functional requirements of the Core testbed.

· The Virtual Workbench (VWB) 17 is a display system designed to produce stable virtual environments. (Refer to endnotes for detailed information regarding VWB background18 and VETT-relevant Applications.19)

· To support the specific requirements of the developer and the end user, the core testbed has been developed as a Reconfigurable VE System.20
TRAINING APPLICATION

Application Development

The implementation phase of the core testbed project followed the initial installation and testing of system components as outlined above. The design of the first training application to be performed on the Core testbed facility was the result of a cooperative effort between the MIT research and development team and the BBN training team. The specific task which became the focus of the VE training effort was the training of the submarine Officer of the Deck (OOD) to navigate a harbor when surfaced. Multiple personnel, including the OOD, a helmsman, and a below-deck navigational team, are involved in the real-world task. The OOD has moment-to-moment responsibility for the safe and proper operation of the submarine. As team leader of the piloting crew, the OOD stands on the bridge of the submarine with a 360 degree view of the harbor. He is continually advised by the ship’s navigator located below deck in the control room. Based on information provided by the navigator, information obtained from the visual scene, and information obtained from auxiliary information sources such as charts, the OOD controls the direction and speed of the boat through orders issued to the helmsman (Refer to Figures 3 and 421).

Baseline Simulation

Version 1.0 of the OOD training application was implemented as a baseline simulation in which only the essential objects and interactions of the OOD task were represented. Artificial instructional cues (e.g., graphical indications of water currents and the boat's direction of motion) were added in later versions. The BBN training team scripted the initial pilot experiments (OOD1.0) which consisted of five two-hour sessions. Survey data were collected to determine if subjects experienced any adverse side effects. Participants were also surveyed regarding the difficulty level of the navigation task. The usability and potential training effectiveness of OOD 1.0 were supported by the pilot experiments. (Please refer to the VETT Training Effectiveness chapter for a detailed description of the Habor Navigation task and pilot study.)

Structure22
The underlying structure of the OOD training simulation consists of a primary computing platform and peripheral elements. In addition, key components specific to the OOD training task have been included. These components can be categorized as Physical Level, Functional Level, and Internal models/simulation (Durlach et al., 1996). A list of the principal components is provided below.

Physical Level.

· Metal railing (simulating the railing around the conning tower)

· Push-to-talk button on the intercom

· Microphone

· Headphones

· Input/output device (head-mounted display, head tracker)

Functional Level.

· Hark speech recognition software

· Graphical design of the VE imagery and instruments

(Refer to endnotes for detailed treatment of functional interfaces.23)

Internal Models/Simulation.

· Underlying model of the ship's dynamics

· Model of physical processes (behavior of water currents, etc.)

· Model of interaction between virtual objects (collisions, etc.)

Specifically, these internal models included the simulation of terrain, water, weather, sounds, watercraft, as well as interaction with the below-deck piloting crew. A description of each model is presented below.

Terrain. The OOD training application was modeled after the harbor at King's Bay, Georgia. Nautical charts from the U.S. Defense Mapping Agency (DMA) were used to develop models of buoys, land masses, channel segments, centerlines, and channel depths. Programming decisions regarding "selective fidelity" were made by the BBN training team.

Water. Texture mapping of waves were added to provide depth cues for the OOD trainee. These computational models were developed to interact consistently with simulated sounds and weather features. Textures representing buoy wakes were later added to indicate the strength and direction of water currents.

Weather. Significant meteorological features were not modeled in the OOD training task due to the fact that harbor approaches are generally made in favorable conditions.

Spatialized and Ambient Sounds. Ambient sounds (winds and waves) as well as spatialized sounds (navigational aids and maritime traffic) were added to enhance the trainee's sense of presence.

Watercraft. Commercially available models of submarines and other watercraft (including submarine propulsion and steering systems) were implemented, while geometric models of the conning tower were generated in house. Static models of maritime traffic and navigation aids (i.e. buoys, hazard markers) were utilized in the preliminary OOD training simulation. More complex navigational models were planned for subsequent applications.

Piloting Team. The piloting team model was designed to accept limited input from the OOD trainee and provide output to the trainee from a database of pre-scripted messages.

EVALUATION

Validation and Verification

A series of analyses were conducted to validate VE system requirements, processes, and models. The general methodologies applied in the assessment process are provided below (Kneppell and Arangno, 1993, cited in Durlach et al., 1996).

· Conceptual Model Validation analyzes and justifies the concepts, assumptions, and algorithms defined in the requirements.

· Software Verification assures that the validated requirements have been correctly implemented and tested.

· Operational Validation assures that the implemented models and processes compare well to reality.

· Data Validation checks the sources and the consistency and accuracy of the data used in the simulation.

· Internal Security Validation checks configuration management issues.

Analyses of particular importance in the verification and validation process included task analysis, fidelity analysis, input-output analysis, and analysis by domain experts. A brief summary of each is provided below.

Task Analysis.24 A thorough analysis of the OOD navigation task was conducted to ensure 1) that task elements were represented accurately and 2) that no critical actions or subtasks were omitted from the training simulation. In the real-world environment, the OOD is responsible for guiding a surfaced boat through a narrow channel. This task is accomplished by monitoring navigational aids and water currents as well as attending to nearby watercraft. The task analysis identified three key, sequential sub-components of the navigation task. These subtasks include: centerline alignment, turning aid identification, and turn execution (Durlach et al., 1996). To effectively represent these subtasks, system developers simulated buoys, range markers, and turning aids as well as stationary models of civilian watercraft. Water currents were added in later versions of the simulation, and scripted movement of external water traffic was proposed for future simulations.

Level of Detail.25 In addition to examining the nature of the OOD navigation task, system designers analyzed the level of detail required to effectively represent key task elements. The goal of the simulation was to ensure training effectiveness, not to replicate each detail of the real-world task. As the developers explain, "Each object must be carefully examined to determine which features directly support performance of the task and are therefore essential for training effectiveness, and which features are secondary or even irrelevant." The results of this examination determined the level of detail requirements for the OOD simulation.

Input/Output Modes.26 Information derived from the task analysis served as a basis for assessing human/machine interface requirements. In the real-world task, the OOD's primary source of information is obtained visually (i.e. observing harbor conditions and attending to navigational aids). The OOD also receives verbal information from the navigation team below deck. However, in the event of a communication system failure, the OOD must be able to complete the navigation task without the guidance of the piloting team. For this reason, the training simulation provides visual imagery as the primary mode of output to the trainee with verbal output as a secondary mode. The VE is also equipped with a speech recognition system to process spoken input from the trainee.

Analysis by Domain Experts. A critical step in the testbed validation process involved consultation with domain experts. Submarine officers from the U.S. Navy Submarine School, New London, Connecticut, visited the testbed to review and critique the OOD training simulation. Other officers familiar with the King's Bay channel were consulted periodically by testbed designers to ensure the fidelity and utility of the training application.

Hardware and Software Tests and Improvements

This section presents a brief summary of the evaluation process associated with testbed hardware and software. During this process, manufacturer specifications were verified and compared to performance requirements of the testbed facility. When feasible, components not meeting these requirements were modified for use within the testbed. In other cases, an optimal trade-off was determined among available alternatives (Durlach et al., 1996).

Electronic Hardware. A series of tests were conducted to measure the performance of the testbed’s electronic hardware. Of particular interest are the following.

BBN HARK Speech Recognition System. A "push-to-talk" button was added to the BBN HARK speech recognition system, resulting in recognition rates well above the 90% required rate. Recognition times under the two second requirement were also confirmed.

VR4 Head-Mounted Display. Due to its increased field of view and superior image quality, the VR4 head-mounted display was selected for the OOD training simulation despite its lower-than-average resolution. Testbed developers (Durlach et al., 1996) determined that the benefits of the VR4 display outweighed the slight loss of resolution.

Testbed Communication System. As a result of time constraints associated with Ethernet LAN, other communication technologies were considered. Scramnet, a fiber-optic shared-memory network, and ToolTalk, a cost-effective communication software program, were identified as possible alternatives to the Ethernet LAN system.

Graphics Software. The evaluation of graphics software began with an assessment of the SGI Performer library27 and the 3D library implemented in the original testbed. Investigators determined that testbed graphics were well supported by the Performer but that access to the Performer should not be embedded in 3D (Durlach et al., 1996).

Two commercially-available software packages, Division's development environment (Dvise, Dvs) and Paradigm's Vega,28 were evaluated for possible support of the Performer library. The cost and learning period associated with these support packages were determined to outweigh their benefits.

Non-graphics Software.29 Use of the VETTnet Blackboard was found to produce a significant communication bottleneck in the transmission of graphics data. ToolTalk, a commercially available software package was identified as a possible alternative to the VETTnet Blackboard system.

ENDNOTES

 1CORE TESTBED ARCHITECTURE

The Multi-Modal Rendering (MMR) Pipeline

The notion of a modular software testbed has been well-established in the computer graphics community since the early 1980s (Whitted & Weimer, 1981; Blinn, 1982; Nadas & Fournier, 1987; Potmesil & Hoffert, 1987) . More than ten years ago, Gomez, MacDougal and Zeltzer described a number of interactive and interoperable components of a large scale, interactive graphics system developed at the Computer Graphics Research Group of the Ohio State University (Gomez, MacDougal et al., 1984), which included a solid modeler (Carlson, 1982) , a geometric editor (MacDougal 1984) , an event- driven animation system (Gomez, 1984) , a human figure simulation package (Zeltzer, 1982) and a then state-of-the-art rendering program (Crow, 1982). Through the use of data protocols and standard descriptions of graphical objects and operations, as well as communication via UNIX pipes, each of these components could freely interchange graphical objects and specifications of complex time-varying operations on these objects. Researchers could thus develop system modules independently, and while the entire graphics pipeline could not run in realtime -- then-current technology did not support realtime, shaded graphics -- each of the system components, with the exception of the rendering system, provided an interactive, realtime user interface.

Computing technology has changed dramatically in a number of dimensions in the last decade, but two principal differences distinguish current VE systems from the work noted above:

· Realtime interaction with models of moderate complexity is possible; and

· multi-modal interface devices that can support visual, auditory and haptic interaction are widely available.

In view of these differences, a functional decomposition similar to that described by the Ohio State researchers can be applied to VE systems. Rather than a graphics pipeline, however, VE systems can be thought of in terms of a multi-modal rendering (MMR) pipeline which can support audio and haptic sensing and display, in addition to visual output provided by the graphics pipeline. Please see Figure 2.

Like many other computer-based systems, the MMR pipeline of a VE system has design time and run time stages. During design time, models are defined and assembled in a data generation phase, using 3D modelers; or acquired, perhaps from some source on the Internet, and modified as necessary, again using some 3D modeling tool or toolset. Next, in the scene description phase, these models are integrated into a virtual world, which in its most basic form means that each geometric object must have its position and orientation in the world coordinate system specified.

At run time, the VE simulation processes are started, and the models are displayed to the VE participant. At the same time, various sensor systems measure and record the motions of the instrumented VE participant. This allows the rendering programs to update the VE displays according to the participant's gaze direction, for example. Finally, in a post-processing phase, various operations may be performed on multi-modal images displayed to participants. Multimedia, for example, can be merged with the VE displays.

In the following sections, the design time and run time components of the MMR pipeline are described in more detail, including a discussion of which portions of the MMR pipeline are supported by the Core Testbed. Then the major functional components of the Core Testbed will be described.

Design Time: Data Generation

In this stage, the database of objects to be included in the virtual world is created. In practice, operations on data are subdivided into generation, in which objects are initially designed and created; and manipulation, which involves operations on previously defined objects. As Brooks has pointed out, model building has been and remains perhaps the most time-consuming bottleneck in constructing virtual worlds (Brooks, 1986) . This is especially true when models are non-rigid and deformable, or are to be simulated dynamically, since these techniques require the specification and validation of detailed information regarding physical properties, in addition to the usual geometric and kinematic attributes. Therefore, interactive tools for defining and editing mechanical specifications, i.e., for interactive mechanical modeling, are especially important when these techniques are employed in a virtual environment. Vendors of modeling software are just beginning to consider and incorporate the requirements of VE applications in their products.

In addition to modifications and refinements to object geometry, the manipulation phase often includes specification of non-geometric attributes for use by the rendering systems. For example, texture mapping requires a specification of the mapping between a polygon and a texture map, and many modeling systems support this kind of functionality as well.

Data generation and manipulation tools have not been incorporated into the Core Testbed, since many standalone software packages are available from the Internet as shareware or from vendors. Data translators are also available -- or can be developed relatively easily -- so that object databases can be readily translated into a form that the Core Testbed can accept.

Design Time: Scene Description

During scene description, the previously defined objects must be assembled into a virtual world. In general, geometric and mechanical models are each defined in a local coordinate system, and before they can be displayed collectively in a VE, they must be instanced in a world coordinate system. To instance an object means to generate a geometric transformation that will position and orient it with respect to the world coordinate system. Instancing may involve making multiple copies of an object, each copy in a different position and attitude. For example, suppose it is necessary to model a road lined with utility poles. Only a single utility pole need be modeled, since it can later be instanced any number of times, such that each copy will appear at a unique location when the models and their associated transformation matrixes are passed to the visual rendering system. This is standard practice in computer graphics, and the interested reader is referred to (Foley et al., 1990) for further details.

Any 3D computer graphics system must support object instancing, and the Core Testbed is no exception. In addition, a causality network, in the most general case, is required to associate objects with processes that will be used to simulate various behaviors. Which objects, for example, should be subject to collision detection? These and other issues relevant to setting up a virtual world will be discussed in more detail in [the Developers' Interface7 section].

Run Time: Multi-Modal Rendering and Post Processing

Once a virtual world has been assembled in the design phase--a process which will likely include the development of simulation programs for representing and controlling object behaviors--the virtual world can now be started up on a VE system. For many VE systems, at least two interfaces will be required:

· An end users' interface. This is intended for VE participants, and must be a transparent, task level interface.

· A developers' interface for defining, testing, debugging, refining and extending models and behaviors. This is basically a programming interface, and it has been included in the previously discussed design time section. However, as part of the virtual world development process, developers need to view and interact with the virtual worlds in question, so they are often end users as well.

Since the Core Testbed is to serve as a research platform for the VETT program, a third kind of interface is required, the Experimenters' Interface (EI), which is discussed in [the Experimenters’ Interface8 section].

Finally, a VE training system may incorporate an Intelligent Tutoring System. In that case, an Instructor's Interface would also be required. The purpose of such an interface would be to monitor the behavior of a trainee during a VE training session, and manage the presentation of curricular material based on the trainee's performance. Much of the information required by an Instructor's Interface at runtime can be logged by the current EI. Therefore, the development of an Instructor's Interface, which may be required in future VETT training research, can best be thought of as relatively straightforward extensions to the current EI.

Implementation of the MMR pipeline brings up a number of interesting research issues. The Testbed research team is collaborating with other VETT satellite research groups in a study of physically based models for multi-modal rendering. In particular, representation protocols are needed in order to integrate graphic, acoustic, and haptic databases. Currently, it is an open question whether one set of models can support all three modalities, or whether unique models will be required for visual, acoustic and haptic output.

Research is also needed to develop efficient multi-modal rendering systems. While graphics technology is relatively mature, development of rendering systems for acoustic and haptic phenomena is in its early stages. [See the Audio Server13 section for a description of Physically Based Models for Collision Sound Synthesis.]

Multi-modal psychophysics remains an active research topic as well. For example, can good performance in one modality (e.g. acoustic) compensate for poor performance in another (e.g., haptic)? How important is inter-modal synchronization? These are all areas under study in the VETT program, and are the kinds of experimental questions which the Core Testbed has been designed to help answer.

Communications play a central role in the Core Testbed. The use of networked processors is important to distributing computational burdens in order to maintain necessary response times and multi-modal display update rates in a VE system. In addition, many kinds of information and databases useful in an integrated virtual environment will reside on various hosts which may be interconnected by channels of varying bandwidth. The bandwidth and synchronization requirements for these networking applications depend on many factors, such as the complexity of the computational models, and the processing power of local computing platforms and graphics engines. Micro-networking refers to tightly-coupled communication among various processors which together host the Core Testbed. Examples include the SGI Onyx, which is the graphics server in the Testbed, and the PC which hosts the PHANToM haptic interface device. These two processors must communicate using a high bandwidth, low latency communication channel. Macro-networking refers to connections with other VE nodes via long-haul networks, perhaps using DIS protocols. [See DIS Capability14 section].

While post-processing in the film and video industry refers to often time-consuming, offline operations, here it is taken to mean real-time enhancements to multi-modal imagery presented to end-users. An example is anti-aliasing. Graphical rendering necessarily discretizes geometric models, and this introduces visual artifacts -- "jaggies" or "staircasing". One way to alleviate these aliased images is to render the objects at a high resolution, and low-pass filter the images just prior to display. In another example, a VE training system might introduce instructional cues late in the pipeline. The head motions of the trainee, for instance, might prompt directional indications to be presented in order to direct the end-user's attention to some event or object.

[image: image1.jpg]Design Time

Data Generation

-

Model Design

Y

Scene Description

-

World Design

Run Time
Y

Multi-Modal Rendering

-

VE Session

-

Run-time
Enhancements

Post Processing

Y

- Geometric modelers
[e.g., Medit, ModelGen]
- Mechanical modeling
> physically based models
> kinematic descriptions
- browser

Developers' Interfaces
- 3D modality/causality network
- Interpreted front-end
> naming, positioning objects
- GUIs for device configuration &
communication
> including DIS
- GUIs for audio configuration
> spatialized sounds
> continuous sounds
> event-driven sounds
- recording world states

End-user's Interfaces
(non-programming)

- simulation loop

- micro-networking

- macro-networking

Experimenter's Interfaces

Instructor's Interfaces

- perceptual cue tuning
- anti-aliasing

- multimedia

- instructional cues

Multi-Modal

Sensing and Display

Figure 2. Functional Components of a Multi-Modal Rendering (MMR) Pipeline

Core Testbed Modules

In this section the system architecture of the VETT Core Testbed is described. For this purpose the "statechart" visual formalism developed by Dr. David Harel has been adopted (Harel, 1987; Harel et al., 1988) . The elements of this formalism that will be used in this report are module charts, which specify the major hardware and software components of the VETT Core Testbed, and the information that flows among them.

The VETT Core Testbed system consists of three main elements, labeled Application Models and Processes, Logical Interface and Physical Interface. Please refer to Figure 3. Application models and processes are designed and developed, for the most part, for specific VE applications, and will not be discussed in any detail in this report. The Core Testbed does support this process, however, by providing a modular architecture which facilitates the integration of externally developed models and [image: image2.jpg]VETTnet

Blackboard

Application Models
and Processes

Interprocess

Communication Controls

Behaviors

Other
Networked
Players

Voice & Queries & Data
Output w VE Updates
gpeech Logical <
ﬂ]‘ User Interface < Display Recognized VE
E Input [’ vU pdates Speech Updates
Updates Physical Interface
y VETT API
; P! Sensors BBN
" Hark
Audio Displays Voice
Server
Input
Acoustic
Signal Spatial - -]
and (x,y,z) Sounds Speech, Video, Audio, Visual
Gestures Haptic | Updates r
S Al}fi{o i Trainee VETT API
patializers SGI
Developer - Performer
Experimenter
—————————————————————————e A

processes.

Figure 3. The principal hardware and software modules of the Core Testbed

As shown, the Physical Interface consists of the sensors and displays used to "immerse" the trainee in the VE: audio and visual displays by which information is presented to the trainee; and the position trackers, voice input systems, and other components used by the trainee to communicate speech and gestures to the VE system. The various sensors and displays will be discussed in more detail below.

The Logical Interface represents the human/machine interface software that mediates the interactions among the major components of the system, as well as managing the interface by which the trainee communicates with, and receives information from, the experimental training applications. In addition to the trainee, however, there are at least two other classes of users of the Core Testbed: system developers, and researchers who are using the Core Testbed as an experimental platform Therefore, the Core Testbed also supports a Developers' Interface, and an Experimenters' Interface. . . .

Besides the Core Testbed, there are seven additional modules. Note that modules with dotted outlines represent existing components external to the system. The following components will be discussed after the Sensor and Display modules are briefly described.

· VETTnet Blackboard

· Audio Server, Speech Server, Sound Spatializers

· DIS Capability

· BBN Hark Voice Recognition Software

· SGI Performer Graphics Software

From Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., and Reid, B. (1995). Virtual environment technology for training: Core testbed, (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 3-10.

2Testbed Hardware
The computational and interface devices comprising the VETT testbed are schematically outlined in Figure 1. The computational assemblage includes:

1— Silicon Graphics (SGI) two-processor ONYX workstation

with Reality Engine2 graphics subsystem

2 — SGI Indigo Extreme workstations

5 — several lower-end SGI Indys and a variety of PC-compatible, NeXT, and Macintosh computers

The computational systems communicate via an Ethernet LAN. The overall system is configured to support a wide variety of visual, auditory, and haptic human/machine interface devices that can be incorporated and substituted in a modular manner. This modularity is supported in part through the multi-server multiple computer architecture of the testbed which also allows concurrent development efforts to take place. The catalog of interface devices includes:

Visual Displays (all usable in monoscopic and stereoscopic modes)

1000+ Line workstation CRT

1000+ Line Large Screen Projection Display

Virtual Research VR4 Helmet Mounted Display

Virtual I/O "i-Glasses"

Virtual Research EyeGen 3

Auditory Display Systems

Crystal River Engineering (CRE) BEACHTRON Spatializer

Additional Spatializers by CRE and Tucker Davis

SampleCell II Multi-channel MIDI Wavetable Synthesis Device

Variety of On-Head and Off-Head Headsets and Speakers

Speech Input Systems

Support hardware for BBN HARK Speech Recognition System

Whole Hand Input Systems

VPL Dataglove2

EXOS Dexterous Hand Master

Force Feedback Systems

PHANToM 3-DOF Force Feedback Interaction Device

Position/Orientation Input Systems

Polhemus FASTRAK Electromagnetic Tracker

Angularis Inertial Orientation Sensing System

In addition, a "workbench-type" multimodal front-end to the testbed has been developed for use in those experiments where a "reach-in" interface is appropriate. This new apparatus is described in the Virtual Workbench section.

[image: image3.jpg]Voice Input

(BBN
Audio Interfaces
* SGI Indigo Extreme - -
* SGI Indy Audio Audio e | DOCUMenNtation
« PC w/Beachtron =1 Distribution Headset Sanarss
* MAC w/SampleCell II
i Off-Head
Motion Trackers Speakers —p»- | Field Sequential
* Polhemus Fastrak Recording
* Shooting Star - g
* MIT inertial tracker
Time base
Generator
Haptic Interfaces
* VPL Workstati V
DataGlove2 et C(c))lrors é&?rn v gMg 3
. eGen
e (stereo) [| Distribution ||
! |
: Video
Future Interface Device SGI Onyx-2 RE-2 Video Projector
<& w/multi-channel (stereo)
Recorders
Future
VETT Net/ Blackboard _Visual

Figure 1. Block diagram of the VETT testbed

Schematic representation of the interrelation between the various items of hardware comprising the VETT testbed.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp.11-13.

3TESTBED SOFTWARE

Certain software choices, such as selection of an operating system, are largely hardware-dependent. For example, although we are currently looking into incorporating realtime-friendly operating systems (such as Lynx) into our PC-based machines, we must continue to use the realtime-unfriendly Unix operating system on the SGI computers that form the core of our facility.

Beyond the hardware-determined context of the operating system, the testbed software includes:

· Graphics software (performer, open GL)

· VETTnet/Blackboard

· Experimenter’s Interface

· OOD models

· Hark speech recognition

· Haptic rendering software

· Audio spatialization

· Audio background

The VETTnet inter-process communication system supports the "blackboard" distributed database that is available to all processes on any other machine on the subnet. This blackboard simplifies the communication of data among the different hosts and processes. The remaining items in the list have been described elsewhere in this report and in our previous reports. Figure 2 provides a schematic diagram of the major software components and the type of data that is communicated among them.

[image: image4.jpg]VETTnet
Blackboard

estbed

Application Models

Other
Networked
Players

DIS

Experimenter

and Processes
Interprocess
Communication Controls f *Behavn-
oice & Queries
C;’n.put VEUPM?
Speech > Loglcal ot
Server & -t ;
User |_> Interface | Display Rwosx:::: Updz‘t/eEl
VE Input Updates
Updates [Physical Interface
Voice VETT API
P Sensors BBN
Ambient Hark
Audio [sounds Displays |«
Server sl I‘;o:::
Acoustic
Signal Spatial - . .
and (x,y.z) Sounds Gsmm Video, :{:::t:)c, U;]‘;:;n:sl
Trainee VETT API
SGI
Developer -t Performer

Figure 2. Principal Hardware and Software Modules of the VETT Testbed

Interrelation of the various hardware and software modules comprising the VETT testbed.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 13-15.

4Sensor Modules

The Sensor Modules represent the collection of input devices used to monitor the VE participant's speech and gestures. In this report we do not specify required devices; rather, we indicate the range of available devices on the Core Testbed from which to select when developing detailed specifications of the training applications or experimental programs to be implemented. These include devices to monitor Manual Gestures, Head/Gaze Tracking and Voice Input. Please see Figure 4.

[image: image5.jpg]Application

Behaviors

& Data Logical
Models > Interface

and Processes
Display
Updates

Displays
Visual Audio
CRT HMD HMD-mounted

Large Screen

Headphones

Wall-mounted

speakers
Haptic
PHANToM
Video,
Trainee Audio,
Haptic
Developer g—

Experimenter

Figure 4. Sensor Modules of the Core Testbed.

Devices for Manual Gestures include glove-like devices for Whole Hand input. The PHANToM is a 3-axis force input and output linkage which can measure forces applied by hand, for example, when manipulating simulated console knobs and buttons. Keyboard and mouse represent the manual interface devices found in conventional desktop systems which also play a role in the VETT Core Testbed.

There are a variety of position tracking devices available from vendors such as Polhemus, Inc., or Ascension, Inc., and this off-the-shelf tracking technology is entirely adequate for tracking the position and orientation of the VE participant's head and direction of gaze. This information is used to update the visual field in a head-mounted display.

Finally, the Voice Input module represents off-the-shelf connected-speech recognition software which is also available from a number of vendors, and which is also sufficiently mature for this application. For the VETT Core Testbed, we have chosen the Hark system from BBN15.

From Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., and Reid, B. (1995). Virtual environment technology for training: Core testbed, (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 10-12.

5Display Modules
Display modules include Audio, Visual and Haptic output devices. Please see Figure 5.

[image: image6.jpg]User Input Logical
#>i Interface

Controls
& Queries

~ Application

: Models :
¢ and Processes ¢

Sensors

Manual Gestures

Whole Hand

Keyboard

Mouse

Head/Gaze Tracking

Polhemus FASTRAK

Multi-sensor

Voice Input

Boom Microphone

HMD-mounted

Speech,
Gestures

Trainee

Developer

Experimenter

Figure 5. Display Modules of the Core Testbed

Spatialized Audio devices are capable of localizing audio signals so that they appear to emanate from particular (x,y,z) locations in 3D. Ambient Audio signals are sounds that do not need to be spatialized and can be played through conventional stereo- or monophonic audio equipment. The Voice Out module represents spoken sounds that may or may not be spatialized, but which require a separate module to manage storage and real time playback, often in response to spoken input by the VETT trainee. [See the Audio Server13 section].

Visual displays include conventional CRTs, Head-mounted Displays (HMDs), and Large Screen video displays. Any of these displays might be used in an experimental VETT training application.

The PHANToM is a force input/output device that can transmit forces to the VE participant's palm and fingertips; such a device would be appropriate if it is desired to simulate console operations such as pushing buttons and manipulating knobs and sliders. Also included is a PHANToM 3-axis linkage with either a thimble-like device or a stylus handle at the endpoint. By grasping this handle, or by inserting a finger into the thimble, the user can "feel" around in an approximately one cubic foot volume. The surfaces of simulated objects located within this volume can be felt, and if these "objects" are movable, they can be pushed about in this virtual space.

From Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., and Reid, B. (1995). Virtual environment technology for training: Core testbed, (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 12-13.

6LOGICAL INTERFACE MODULES
The Logical Interface represents the human/machine interface software that mediates the interactions among the major components of the system, as well as managing the interface by which the VE end-user -- in this case, the trainee -- communicates with, and receives information from, the VE trainer. In general, human/machine interface technology remains a major challenge, and designing an efficient, transparent interface for a complex system is very hard. Too many degrees of freedom to be attended to make the control task difficult or impossible for the human operator, therefore the interface must be carefully organized. In addition,3D "immersive" interfaces present many new problems, in the sense that with no conventional interface devices -- e.g., keyboard, mouse, joystick, etc. -- it is not even clear how to represent the system and model "control knobs". Should voice and gesture replace some or all of such "knobs"?

Moreover, in large, complex virtual worlds, or more abstract "data spaces", it is easy for the human participant to get lost, confused or ill.Therefore, improved understanding of human spatial cognition is required in order to provide the appropriate software tools to assist in navigation through such synthetic environments (Esposito 1993).

In this section we discuss two of the Core Testbed interfaces, the Developers' Interface and the Experimenters' Interface. See Figure 8. These two are application- independent. The Trainee Interface, on the other hand, must be designed and implemented based in large part on a task analysis of the particular operations to be trained. Discussion of the Trainee Interface, therefore, will be left to subsequent reports in which VETT training application experiments will be discussed.

[image: image7.jpg]Logical Interface

Developers’ Interface to
Code and VE Abstractions

Keyboard, CRTSs
Mouse
A Experimenters’ Interface
to VE Objects, Events and
Apparatus
Trainee Interface
to Baseline and Enhanced
Simulations
Y
FASTRAK, HMD,
Boom Mike, «Q—— Trainee |« Headphones,
Whole Hand Phantom
-

ﬁ Developer [«@—
-

Experimenter |-«

Figure 8. The Logical Interface of the Core Testbed

From Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., and Reid, B. (1995). Virtual environment technology for training: Core testbed, (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 22-24.

7Developers' Interface
[image: image8.jpg]VE Visualization

Physical Interface

Sensors

Developer

Displays]

Developers’ Interface

VE Device

Audio
Server

Configuration

Application

Rapid Prototyping . Causality Models
Interpreter Network and
Processes

y

SGI
Performer

A

;

; Geometric
InpsuttFlles Object
P Instancing

XFM Matrixes

v (possibly ID)

Setu Geometric

Scri lt)s —» and Mechanical
P Data Files

Figure 9. The Developers' Interface of the Core Testbed

The Core Testbed software system 3D is a toolkit for creating custom VE applications that use multi-modal, interactive computer graphics techniques (Chen & Zeltzer 1992) . The approach is to provide an interpreted command language that has many special purpose rendering, dynamics, numerical math, and user interface functions all integrated at a relatively "high level". This software was developed at the Computer Graphics and Animation Group at MIT and allows:

· The specification of behaviors for virtual worlds,

· the development of interactive simulations, and

· the design and implementation of VE interfaces.

The syntax for the 3D language is based on the Tcl embeddable, application- independent, "tool command language" from U.C. Berkeley (Ousterhout, 1990) . Tcl is distributed as a C library package and is designed to be used in many different programs. Included with the library is a parser for a simple but fully programmable command language as well as a small collection of built-in functions that support general-purpose language features such as variables, lists, expressions, conditionals, looping and procedure definition. An instance of an application program based on Tcl, such as 3d, extends the basic set of Tcl commands with any number of application-specific commands. The Tcl library also provides a set of utilities that simplify defining these application-specific commands.

Rapid Prototyping Interpreter

The 3D command interpreter has over 700 built-in and application-specific functions. There are primitives for scene description and rendering, math, matrix and vector operations, general data structure manipulation, Denavit and Hartenburg joint description (Denavit & Hartenberg, 1955) , finite element dynamics and X/Motif interface building. The intent of combining this functionality into a single program is to allow easy prototyping of new virtual world applications.

The heart of the 3d system is the dialog manager. Commands are accepted from the keyboard, through X events, or from manipulator programs (Pieper, 1991) -- including I/O device controllers and VE simulation modules--that communicate via UNIX pipes. These commands create and control an extensible, typed object database that defines the state of the virtual world.

There is a two-tiered approach to creating new virtual worlds using 3D. First, because Tcl allows procedure definition, it is easy to make collections of useful subroutines in the interpreted language that can control object behavior, VE interface devices, and light and camera motion. One of the main benefits of using an interpreted language is that development of new behaviors can be very rapid. Second, program elements that must run very rapidly can be written in C and can then be easily imported as new application- specific functions for the command interpreter. It is important to note that these functions can usually be prototyped first as Tcl procedures (tclprocs) before implementation in C. In this way an "application driven" programming style is encouraged.

Causality Network

By associating events and processes in sets of causal relationships, a causality network defines the top-level behavior of a virtual world, as well as behaviors of other components and sub-processes (Zeltzer et al., 1989) . For example, a program which controls the physically based behavior of a mechanical assembly would send commands to a mechanical simulation module to update the state of the assembly when one of the parts is moved by a human wearing a whole-hand input device (e.g., a DataGlove). While these associations can be hard-coded into a VE system, a language for dynamically specifying dependencies and attachments is a very general tool for describing and modifying virtual worlds. While a causality network has been implemented in earlier work (Sturman et al., 1989; Zeltzer et al., 1989), the Core Testbed Developers' Interface currently lacks a causality network, which remains an item for development later in the VETT program.

Device Configuration and Object Instancing

Device configuration on the Core Testbed can be accomplished in part through startup scripts, and in part through hand-coding of application modules. It would be desirable to provide developers with a visual programming interface which would enable the developer to specify and connect devices and processors with graphical input tools. Such an interface remains an item for future development.

Object instancing is currently implemented using startup scripts. These scripts can be developed both from within and without 3D. Since 3D provides an interpreted front-end, it is possible to instance objects using various built-in commands to move, scale and rotate objects. In addition, standalone modeling packages such as Medit provide interactive tools for instancing objects, and geometric information can be output by such packages and edited into VE startup scripts.

From Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., and Reid, B. (1995). Virtual environment technology for training: Core testbed, (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 25-27.

8Experimenters' Interface
An ideal experimenter's interface is a comprehensive, easy-to-use, generalized layer of software that simplifies conducting research using complex computer systems (Wiegand, 1994a). An Experimenter’s Interface should:

· Automate repeated tasks in experimental procedure;

· simplify setup of initial parameters;

· facilitate subject information management;

· provide rudimentary control of the experiment; and

· collect and format data efficiently.

These characteristics can be validated through simple observation of traditional scientific methods, where repeatable results and rigor are of utmost importance. These traits are by no means simple to implement, resulting in the use of paper and pencil over more sophisticated computational resources.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, p. 30.

9The Need for an Experimenters’ Interface

An experimenter's interface (EI) should be designed to be a generalized top layer of software used for research in a variety of experimental environments. The development of an EI is motivated by a number of desirable characteristics of experimental systems, including a simple interface, a consistent experimental procedure, and a consistent interface despite an evolving set of experimental software and hardware.

Because of the large number of individual researchers wanting to conduct experiments on the hardware and software systems located in the VETT laboratory, it is not reasonable to expect each researcher to implement their own, usually redundant, software for conducting an experiment. Thus, the developers of the VETT testbed facility have devised a system that keeps the tasks for the cognitive scientist and the software engineer within his or her area of expertise. A cognitive scientist is not often adept at programming, nor is a programmer often conversant with the details of good experimental procedure. An effective EI should bridge this gap by providing a simple interface to the cognitive researcher while interacting robustly and consistently with the experimental programs written by the computer programmer.

The simplicity of such an interface would have many advantages. Not only would it promote use of the VETT Core Testbed among less computer-savvy researchers, but it would also ensure that despite changes in underlying hardware and software, the interface remains very much the same. This consistency would make the entire system even more friendly to both researchers and programmers alike.

The consistency provided by an EI extends beyond the idea that the underlying experimental hardware and software will evolve. By automating much of the experimental procedure, more consistent and noise-free data could be accumulated. The pencil-and-paper record-keeping tradition of the cognitive psychologist would be replaced by a system less prone to human error.

From the software developer's point of view, the creation of many different experimental system means a significant amount of repeated or similar code. Any piece of software meant to drive an experiment has certain features. By using an EI to do experiment specification, experiment control, and data collection, time and resources can be devoted to the formidable task of updating testbed software to accommodate new devices and new experiments. An EI also encourages lucid and consistent software design techniques since software engineers would need to sufficiently modularize their code. In addition, more features could be added to an EI over time, allowing for a more flexible and facile set of research tools. Such an interface could evolve into an extraordinarily comprehensive top level interface to a variety of experiments.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 30-31.

10EXPERIMENTERS’ INTERFACE – DESIGN
Design Implications

In order to develop a comprehensive piece of software such as an experimenter's interface, certain issues outside the realm of software development have to be considered. That is, to correctly assess the needs of the system's end user requires a careful amount of thought about what the research system will be used for. An EI should provide a top-level and consistent interface to many kinds of experiments and serve as a bridge between the cognitive scientist and system developer.

The general abilities of cognitive scientists and software engineers are also critical to the design of an EI. The cognitive scientist generally needs a consistent and simple interface, while the software engineer wants to minimize the amount of redundant programming in a project and write clearly-designed programs. An EI should provide the scientist with the necessary interface, while maintaining a similar ease-of-use with the software engineer. That is, an EI should be simple to attach to existing experimental software systems, as well as being simple to use. This simplicity requires maintaining a consistent interface to both parties despite internal feature changes. The development of an experimenter's interface requires careful attention to several issues. Maintaining an adequate level of devotion to the various users' needs is a difficult task and makes the development of an experimenter's interface an especially interesting and daunting task.

Overview of the Experimenter’s Interface

The Experimenter’s Interface is an actual experimenter's interface for the VETT testbed system. The EI attempts to meet the criterion previously specified. The EI consists of two main components: a text "script" file and a graphical user interface (GUI). The script file has an associated grammar for describing the experimental conditions, the experimental procedure, and the nature of the data collection. The GUI serves as a run-time interface that controls parsing and interpretation of the script file. The GUI provides a method for entering subject data and presenting instructions, as well as providing simple control of the experiment. The EI is itself part of the pathway from experimental hardware to data analysis and write-up.

The interface devices are specific to the VETT facility and are subject to replacement as better technologies become available. The software needed to control them resides in some application termed the Experimental Program (EP). The EP also contains the code needed to generate the particular VE desired by the experimenter. The EP receives the initial parameters and simple start and stop commands from the EI, while the EI collects data produced by the EP. The two programs exchange information across a virtual shared database known as the Virtual Blackboard (Nygren, 1994). The EI formats and writes out the data to files. These files can be imported into a variety of commercial statistical analysis packages.

The EI currently runs on UNIX-based Silicon Graphics computers. It should also compile and run on most UNIX-based machines, but it has not been extensively tested on other machines. However, any machine capable of displaying Motif windows should be able to serve as a terminal to the EI running on an SGI computer. Earlier versions of the EI were developed to work on Macintosh platforms, but this avenue of development was abandoned in favor of a faster-running design for the SGI machines. An additional advantage of the current design of the EI is that in a network of machines, it can run on less computationally critical machines, thus leaving the computer running the EP to have the maximum processing power often needed for the real-time graphics needed in some VE experiments.

[image: image9.jpg]Devices and Device Drivers

Phantom, Head- mounted
Field-Seq juential Gogg
Polhemous Fastrak,

DataGlove,
Convolovotron,

es HARE.

scensnon Bird

r—

|

Data Files

3843984354383132464386
9827/92494327898429645
0132949526798254439854
1639641952342984267650
6021010101952945279257
3164314159267535897323
6161649566459138465664
6168465146516541615416
0981723098590871348209
3705098724972987187010
7123948709287309247810
9809713049872345802023
4981908120949827349861
2634987598629681906834
0986120986430981645901
861098234096821349061

l e

!

Experiment
Application

written in Performer,
CL/TK, C, C++...

!

Experimenter's Interface

GUI

Experimenter's
Interface

EI script
outfile("datafile”, yes, periodic)
outfile("datafile", no, aperiodic)
query(“subject's name")

45,

selinitial params(
65 “left-

hand",3)

selectdata("x-pos”, "y-pos”,
“time", "depth”)

descrparams("datafile”)

descrdata(" datafile")

eulhuémgs(time “,"xpos ",
“ypos”)

runtrial ()

Enter subject's name:

Data Analysis

Matlab StatV1ew S Igor,
Excel, DataDesk .

Figure 5. The relationship of the script file and the graphical user interface

The EI presents a uniform interface to the experimenter through the use of a standard set of script commands and a consistent GUI.

[image: image10.jpg]‘Experimenter's Interface

expenmenter
| A U |
L 1
interacts with * *wrim
GUI EI script
Expery ‘s loterface i
= M7 s EPSC‘_CSS_.» outflile("datafile”, yes, periodic)
outfile("datafile”, no, aperiodic)
bringq u qum query(“subject's name™)
windgw
o | —— setinitialparams(
|
"left-band", 3)

Abont Experimest

b s up control window
R e e o SREE

Enter subject's name:

[

|
|
|
|
|

mmaJpanmﬂen

nltc(daul *x Po: “y-pos®,

“time", "depth

descrparams(“datafile™)
descrdata("datafile”)

colheadings("time ","xpos

runtrial ()

", “ypos®)

specifies
and
describes

f
1%1:? TR -

l

4

Experiment Program (EP)

Gets initial parameters from EI
Waits for commands from EI

Performs experiment on
subject
Gwes data to El

5
|
I
|
<

data

S SR

subject

__—_-—-.—-.—.—l

| s

Data
Files |

3 July, 1995 15:03 l

subject’s name: Jonathan

[— * time Xpos ypos
1 34 54
2 4555
3 3323
4 59 1.0

Figure 6. The interaction between all parts of the experimental VE system

Schematic overview illustrating the functional components of the testbed from the experimenter’s viewpoint.

Lexicon of EI Scripting Commands

As seen in Figure 5, the EI consists of a GUI and a script file. The script file is written by the researcher to describe a particular run of the experiment. The GUI lets the user select a particular script file to be interpreted by the EI, which, in turn, prompts the GUI to present windows and options to the user.

Because the script file is interpreted by the EI, each command is read then immediately executed. This means that the order that the commands appear in the script file determines the order of events in the GUI. There are certain constraints on the grammar of the script; certain commands can only occur after others. The following is a list of commands available in the scripting language and their basic functions:

outfile ("filename",yes/no,a/periodic). The outfile command specifies the name and type of one data file. The type is specified to be annotated or not by the second argument, "yes" or "no". An annotated data file will receive the results of all query commands. The third argument determines if the file will contain periodic data or aperiodic data.

dateandtime. The dateandtime function stamps all annotated data files with the current date & time.

query("what to ask"). The behavior of the GUI can be influenced with this command. For example, if the experiment wants to prompt for the subject's age during every experiment, the query command, when interpreted by the EI, would make a window to appear asking for that information. This command can also be used to prompt the experimenter for comments before and after the trial.

instructions ("for_whom", "instructions"). The instructions command, like the query command, results in the presentation of a window at run-time. The window contains the instructions specified and a header describing for whom the instructions are meant.

setexperiment(experiment_type). Because the EI is designed to work with a variety of experimental programs, the setexperiment command is necessary to specify what kind of initial parameters and data types to allow.

setinitialparameters(parameters). Setinitialparameters allows the user to set the initial conditions for the experiment specified with the setexperiment command.

selectdata("filename", y/n,a/periodic,data_items). The user may want certain data in particular files. The selectdata command allows the user to specify a file (which has to be previously specified with the outfile command) and the particular data to go in that file. The order of the data items determines the order in the data file.

descrparams("filename", yes/no,a/periodic) . The descrparams command lets the user have the initial parameters and their assigned values printed to the data file specified. This is to aid human interpretation of the data files.

descrdata("filename", y/n,a/periodic). Like the descrparams command, the descrdata command adds to the file information about the data collected in a that file.

colheadings("filename", y/n,a/periodic,headings). Human interpretation of data files is often a difficult task. Adding column headings to the specified file with the colheadings command eases this problem.

runtrial(experiment_type). The runtrial command, when interpreted, causes a window to appear that prompt the user for a start or abort command. This gives the EI a simple run-time control over the EP.

The EI was designed to be simple, especially at run-time. The simplicity of the scripting language and of the GUI's behavior and appearance reflect this design. The EI, when executed, starts with the display of a window that asks the user to select "Load Script", "Check Script", or "Quit". After selecting one of the "Script" commands, the user is prompted for a filename. The "Check Script" parses the script file but does not interpret it, while the "Load Script" button starts the interpretation of the script file after it is specified.

The script file determines the next set of events. Query or Instruction windows may appear if specified in the script. Status windows will appear showing the status of the interpretation and the status of the network communication between the EI and EP. When the runtrial command is reached in the script, the user will be presented with a window that asks for either an "Abort" or a "Start Experiment". "Abort" quits the particular interpretation, saving all of the data collected from queries. "Start Experiment" tells the EP to begin and the EI to start collecting data. During the run the user is allowed to "Abort" or "Pause" the experiment. After the experiment has run its course, any other windows may appear, as specified in the script.

Following the experiment, the data files will reside in the directory from which the EI was executed. These files are easily copied or transferred from the site to other machines for analysis.

Structural Justification

The structure of the Experimenter's Interface was designed around providing a simple and consistent top level interface to the researcher. The concept of using a script file is especially well-suited to the constraints for an experimenter's interface, and the simplicity of the run-time GUI helps eliminate human error.

The interface presented in the previous section has the advantage that the interface will be consistent regardless of the experimental program being used. When experimental software or hardware changes or is updated, the interface between the EI and EP can be quickly updated as well. However, the commands that the experimenter issues in the script file and in the GUI will not. Therefore, researchers wishing to use the equipment in the VETT Core Testbed need only learn the syntax of the script file and manipulation of the GUI.

The script file is especially well-suited to evolution. More and more features can be added to the EI through the script file as the project is developed, while the basic syntax will remain the same. So, the EI is designed to grow and change, but not in a manner that will require the re-education of a number of researchers. In addition, the script file is in a simple text format, which means that the actual file can be written anywhere. A researcher thousands of miles away could read the "Experimenter’s User Manual to the Experimenter’s Interface", write a script for a particular experimental program at the VETT Core Testbed, and have one of the local staff actually carry out the experiment. The results could then be easily transferred to the researcher's computer for analysis. This kind of remote experimentation is an especially powerful idea.

The majority of the complexity in the EI is kept in the script. This way, the researchers themselves need not run the experiment; an undergraduate or other research staff could follow the simplicity of the GUI with no difficulty, thus freeing up the researcher's time for analysis. If the researcher is running the experiment themselves, the GUI's lack of complexity will make it easy to use even for the least computer-savvy.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp.31-37

11Advantages and Disadvantages of Using the EI
As with any developing system, there are advantages and disadvantages to using the Experimenter's Interface. Thus far, the advantages of using the EI have been touted, but there are certain situations in which using the EI might be less than optimal. These issues, however, are not critical in most designs.

Using the EI requires that the developer of the EP be fairly careful about his or her design. That is, in order to properly interact with the EI, the EP needs to provide its variables for data recording, and accept rudimentary control commands from the EI. This might present difficulties to the programmer of the EP. The implementation of the EI is such that it minimizes this difficulty by providing simple EP-to-EI interface code, in addition to the "Experiment Program Developer's User Manual to the Experimenter's Interface" for the EI, which explains the critical steps necessary to use the EI.

In addition to influencing the design of the developer of the EP, the EI also requires a commitment to future work. In order to keep the EI up to date with changes in the EP, a certain amount of time must be spent updating the EP-to-EI interface. Again, this is well-documented and as simplified as possible, but in certain situations it may be more of a problem.

In any circumstance, using the EI is going to require an extra amount of work. Someone is going to have to read the documentation and understand it, and enact the necessary changes to the code. These changes have been anticipated and reduced to as simple of a task as possible. The potential benefits of using the EI should far outweigh the minimal work it takes to implement it. To reiterate the advantages of using the EI:

· Provides simple interface to complex system;

· provides consistent interface to evolving system;

· ensures consistent experimental procedure; and

· reduces redundant coding.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 38.

12VETTNET BLACKBOARD

Overview

The VETT Core Testbed contains numerous input and output devices connected to a number of workstations and desktop computers. As a result, a system of communicating data between these devices was needed before a virtual environment could be generated. This was further complicated by the fact that some of the devices are connected to platforms supplied by a variety of vendors, each with their own operating systems. What was needed was a system to allow all of these machines to share data with as little latency as possible. It was also necessary for the integration of network communications into existing device drivers be as simple and as portable as possible. This was done to allow for rapid prototyping.

At present, all of the VETT machines are connected by standard 10 MBits/sec Thin Ethernet running the TCP/IP protocol. A few tests indicated that latencies of considerably less than five milliseconds were easily obtainable with this configuration, even with multiple simultaneous connections. Most of the hardware required to do this was incorporated into our existing machines. An exception was our 486 PCs which are used for hosting the PHANToM, the Beachtron, and some other devices. For networking these machines, we purchased 3Com 3C509 Ethernet cards. These use 3Com's new "parallel tasking architecture" to minimize latency. For software development, we acquired Novell's LanWorkShop software. This package will allow the development of TCP/IP applications on both Macintoshes and PC's, using an API very similar to the 4.3 BSD sockets used on our UNIX machines. This makes porting networking code between platforms much easier.

In order to further reduce development time and increase portability, a custom library for serial and network socket communications was developed. This library has been ported to our Silicon Graphics (SGI), NeXT, and MSDOS machines. Using this library, most networking socket communication code ports between platforms without any changes.

With the networking support code completed, it was then possible to finish designing a high level system for communicating sensor data and other state information. The system that we designed and implemented consists of two layers. On the highest level is a simple but powerful programming interface (API) to the communications system. It is based around the idea of creating objects within a shared database. Data placed into these objects is then available to other clients of the database. This programming interface is not dependent on the implementation. As a result, the implementation can be modified and improved without requiring that the client programs be modified. This API is simple enough that it can be incorporated into existing drivers in a very short amount of time.

The current implementation of this database includes a centralized blackboard global data structure connected to clients through network socket connections (Aviles, Harmon et al. 1985) . Interface code for communicating with this blackboard has been developed for Borland C under MSDOS, for C programs on the SGI's, and for the 3d interpreter on the SGI's that we use for rendering and simulation control. Internally, the blackboard has been designed to be easily extensible. This allows new commands and data types to be added rapidly.

Storing all data in a centralized database or blackboard makes it easy to introduce artificial delays into the data or to mutate the data in other ways before returning it to clients. This will be important for the planned haptics and sensorimotor experiment sets. In order to introduce artificial delays, objects are created in the blackboard with a special data type. Data being placed into these objects are then stored into buffers. The command for retrieving the data can then automatically supply data of a specific age. Taking delay introduction out of the end clients and placing it into the central blackboard makes end client development simpler. It also makes the control of delays easier.

This networking system has already been implemented into, and tested in a demo communicating between the PHANToM haptics device, which is connected to a 486 PC, and a rendering application on the SGI Onyx. This networking system is currently being implemented into the submarine control task as well. Many of the planned tasks require using the output from simple analog control devices. For connecting these, a SPIO Serial Acquisition and Control module was purchased from B&B Electronics. This device has 8 analog inputs along with 8 digital inputs and 2 analog outputs. It can easily be connected to the RS232 serial port on any of our machines. Work is currently underway to use this device for interfacing hand controls such as throttles and joysticks.

There are a large number of components in most VE systems.These include head trackers, renderers, sound spatializers, and haptic devices, among other things. These devices may all be connected to different machines. In addition, most virtual environments have a processes at their core which sets up the environment and the tasks and coordinates the other components. The purpose of VETTnet is to allow data to be shared between all of these components. Since the VETT Lab is a Test Bed, it is also important that integrating this communications system be as simple as possible so that applications may be rapidly prototyped.

Most of the processes in a VE system go through their main loops at their own rates. A Polhemus may acquire new data at 50 Hz, the renderer may run at 20 Hz, and some other device may only update its state every few seconds. As a result, it is important that all of the main loops are uncoupled so that the processes do not have to worry about each other.

To do all of this, the VETTnet system is implemented as a blackboard. The blackboard is a networked database that clients can access, write data to, and read data from. As such, the blackboard is oriented around states of objects. The blackboard contains a dynamic number of these objects which can be created at runtime by the clients. An object might represent the state of a sensor or the position of an object resting on a shelf. Each object has a number of properties. These properties may represent the components of an objects coordinates, or just about anything else.

The next sections briefly describe the logical components of the VETTnet, and some possible future directions.

[image: image11.jpg]Realm

Property
Object
Property
Property
§ § Client
Client Client

Figure 6. The VETTnet system

Clients communicate with a blackboard containing objects.

Components

Realms. Each individual blackboard is a realm. At the present, there are no programs using more than one realm, although this is easily possible. Each realm contains its own set of objects and does not communicate with any other realms. Using multiple realms would be advantageous in cases where certain data was only needed by a small subset of the clients. This way they could access the information without loading down other realms. On a wide area network, it might be possible to have a realm for each local network (which might represent an individual person) and data that needed to be shared by everyone could be stored in an additional realm.

Clients. Each process which communicates with the blackboard is called a client. There is a link between each client and each realm it communicates with.

Links. Links are connections between clients and realms. They are implemented as network sockets at the present, but this implementation could easily change. New links can be created with vnAddLink.

Objects. Objects are used to store and reference data. Each object has a unique name which is used by other clients to locate it. Objects are shared by multiple clients. When the blackboard receives a request for a new object, it first checks to see if an object by that name already exists. If it does, the existing object is returned to the user. Otherwise, a new object is created and returned. The actual data in objects are stored in properties. For example, if an object contained information about the state of a Polhemus sensor, then it would have six individual properties, each containing one of the coordinates.Each object has a class which dictates what its properties are. New objects can be created with vnAddInstance.

Classes. Classes are templates for creating objects. They don't have inheritance. When you create a class, you specify a list of property types for properties. An object created from a class will have the same types of properties as the class has. Similar to objects, classes have unique names which they can be referenced by. New classes can be created with vnAddClass.

Properties. Properties are components of classes and objects which actually stored data. Each property has a type. Types include integers, strings,reals, and others. Properties are usually referenced by a numerical index, starting with one. Within an object, these indexes are unique. Usually, properties are referred to by prefacing the index with an "at" sign. For example,

@6.2.6.1.

might refer to the third property in an object. During the creation of objects and when referring to them, options are often appended to the type name or to the property specifier.

Options. Options are colon separated lists that are appended to property specifiers or type names. For example,

string:strlen=54

specifies a string type which is 54 characters long.

Messengers. Messengers are the primary mechanism for retrieving data from objects. A messenger is a template which can be applied to an object. The resulting string

can then be returned to the calling client. An example messenger might be something like:

echo " @2 @4 "

When applied to an object which has the number 5 in its second property and the string hello in its fourth property, the following would get returned:

echo " 5 hello "

This is particularly useful with the 3D API where the returned evaluations of messengers are evaluated within 3D. New messengers can be created with vnAddMessenger.

Directions for the Future

A number of considerations that should be addressed have not yet been incorporated into the design of the blackboard. The following briefly mentions some of these.

First of all, the current blackboard does no access control. As a result, it would be possible for an unauthorized host to connect to the blackboard while it was running and issue commands. This is particularly dangerous in that the 3d client evaluates the responses of vnGets. As a result, never run the blackboard as root.

With its current design, the VETTnet system is not well suited for asynchronous operation. It is possible for asynchronous vnGet to return data while a client is waiting for a response from a command that requires a response. For example, an asynchronous get may be followed by avnAddClass. If the response from the get arrives after the addclass and before the newclass response, unspecified bad things may happen. As a result, it is important to never issue commands that wait for responses from the blackboard while asynchronous gets are pending. This is not a good way to have to deal with this. While waiting for a response commands that require one, any asynchronous messages should be queued up and processed later on.

If the blackboard is to be used with very large numbers of elements, it maybe advisable to switch from using linked lists to a hash table to speed up the lookup of elements faster.

There should be commands to query the name of elements within the blackboard. Also, it should be possible to obtain lists off all of the elements of a certain class. Particularly, it should be possible to find the ID's of other clients so that messages may be sent to them using interrupts.

A new command should be added (which I will call interrupts for now). Using vnAddInterrupt, it should be possible to have a command evaluated whenever a specified action happens to an object. When creating the interrupt, will specify a command, an object to attach the interrupt to, and an event to trigger the interrupt. This command will most likely be a get, which will cause a messenger to be evaluated. However, it may also be useful for other commands like puts to be issued. By being able to specify any client as the recipient of an evaluated messenger from a get, a message based or RPCsystem could be set up. It would be important to take actions to prevent recursion from occurring.

At some point, it may be useful to have a distributed blackboard. This is far from trivial and raises lots of issues.

The current VETTnet system does no rate control. As a result, it is possible for a client to flood the network with requests to the blackboard faster than they can be processed or even transmitted. This will cause latency to build up. Actions should be taken to guard against this,primarily by intelligently writing clients so that they do not send data too often (at the moment, there should be no problem with doing vnPolls at a high rate.

Facilities for deleting objects should be created. This is made more difficult by the fact that multiple clients can share objects. It might be possible to put a semaphore on each object that gets incremented during vnAddObjects and decrements when clients shutdown or delete the object.

From Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., and Reid, B. (1995). Virtual environment technology for training: Core testbed, (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 13-18.

13AUDIO SERVER, SPEECH SERGER AND SOUND SPATIALIZERS
Requirements

The audio server of the Core Testbed must meet four distinctive requirements. First, the audio information must be consistent in character with the event being represented -- that is, the system must be able to generate sounds appropriate to various simulated events. Second, the auditory events must be synchronized with corresponding visual and haptic events to avoid any conflict of sensory cues. Third, certain acoustic events must be localizable in the 3D virtual environment, so-called "spatialization". Finally, the audio system must be able to handle multiple auditory events that may occur at the same time.

Background

There is no single system in the market today that can satisfy the above four requirements. Most current workstations have been equipped with audio capability, like SGI Indigo2 Extreme or Indy. However, these machines are mainly designed for multimedia sound playback rather than for virtual environment applications. Therefore, they do not have multiple audio outputs available, and are not equipped with hardware that can spatialize sounds. There are various sound boards available, especially for the PC-based market, such as the Gravis UltraSound MAX Card and the SoundBlaster Card. Unfortunately, they are also designed for the multimedia market and they are not adequate for VE applications either. Crystal River's Convolvotron can be used to provide spatialized sound effects, but they do not come with other needed functions as discussed above. Therefore, it was necessary to design a server that incorporates available hardware and software. This audio server has been implemented in-house software to support audio event control, a sampled sound database, and audio event communication.

Design and Configuration

The design of the audio server is based on the four requirements discussed above, as well as the need for extensibility for future improvement. In the current design, the audio server includes one SGI Onyx, one SGI Indigo2 Extreme(which can be replaced with an Indy), one Macintosh Centris 660 AV (which can be replaced with a PC) with a Digidesign Sample Cell II Playback Card, one Gateway 2000 PC with a Crystal River Beachtron,and one mixer to blend stereo, speech, and spatialized sounds together. The Onyx, the Indigo2, and the PC are connected through ethernet to fully utilize the VETTnet blackboard for sound event communication. The Macintosh is connected with the Indigo2 using the serial port-to-MIDI network adapter and a MIDI cable. Please see Figure 7 which shows the audio server configuration.

[image: image12.jpg]Onyx

| cthernet

1. graphics
server
2. blackboard

server

speech

audio out

Indigo 2
Extreme

(or Indy)

>

MIDI

1. speech
recognition

2. speech
output

3. MIDI
control

4. blackboard

_ client /

Mixer

Mac
(or PC)
—— 2 4,
s 22
Digidesign 2°
Sample Cell IT stereo ambient sounds
1. preloaded
sound ,rz
samples
i PC
N |
r —————— — — — — — — -
Crystal River
mono sound Beachtron spatialized
signal ﬁ sound
1. spatialized
input sounds
2. blackboard
client
Speakers [€&—— Amp. [«
HMD
audio output

Figure 7. Core Testbed Audio Server Configuration

The major functions of the Onyx in the Core Testbed are the graphics and blackboard communication servers. In addition, it also acts as a sound event initiator. Whenever sound events are triggered, such as the collision of two objects, the sound event initiator will send a control signal through the VETTnet blackboard to the Indigo2 in order to render the corresponding sound.

The Indigo2 Extreme has four functions:

· Communicating with the VETTnet blackboard;

· managing MIDI communication with the Sample Cell II card on the Macintosh;

· recognizing spoken commands; and

· retrieving and playing back pre-recorded speech scripts.

MIDI protocol is used to control the onset,offset timing, initial volume, and decay of a sound event. MIDI protocol provides the capability to cope with the requirement in generating appropriate sounds to various simulated events once it is known how to map the parameters of simulated events to the control signals. As for speech recognition, the BBN HARK system has been purchased for this task, and a database of spoken output has been developed.

The Sample Cell II playback card on the Macintosh has two characteristics: first, it has four stereo output ports which can be used to play multiple simultaneous sounds; second, the on-board memory can be expanded from8 MBytes to 32 MBytes, depending on the need of VETT applications. A reasonably large local memory can accommodate a long sequence of sound events without breaking the sequence into several smaller pieces. Sound samples can be recorded elsewhere and down-loaded to the Sample Cell II and mapped to particular keys as desired. It is easy to set up and very flexible to serve various demands, such as audio latency measurement and various application tasks. The four stereo outputs can be used as eight mono outputs if needed. On the Sample Cell II, different "instruments" can be set for different sound sources, and then mapped to their corresponding output channels. This means that each output channel can be controlled directly, which is very difficult to do with sound cards from other vendors. This feature is very important for simultaneously rendering multiple sound events, which includes spatialized sounds, and non-spatialized, or ambient sounds.

The Beachtron card on the PC is used for spatializing the input mono sounds. The Beachtron can process two inputs and generate the spatialized sounds at the same time. The Convolvotron or the Tucker-Davis Module can be used to enhance the sound spatialization function if needed to meet the requirements of future VETT applications.

Physically Based Models for Collision Sound Synthesis

Apart from the work on visual images, most of the work relevant to the creation of virtual environment has taken place in the auditory and haptic domain. However, unlike the case for visual images, relatively little attention has been given to the case of synthesizing acoustic images. To a large extent, synthesis has been restricted to speech and music and to the filtering associated with room acoustics.

Current devices available for generating nonspeech sounds tend to fall into two general categories--sampling and synthesis. One type, known as "samplers", is based on the sampling of sounds which are pre-recorded and then stored digitally for subsequent real-time playback. The primary advantage of samplers is that one can reproduce the desired, highly realistic sound without requiring the use of computationally cumbersome algorithms for sound generation. The major disadvantages are the effort required to record a sufficiently large universe of sounds and the limited control of acoustic parameters provided by most reasonably priced commercially available devices. The second class of devices is almost exclusively based on MIDI (Music Instrument Digital Interface)devices. Synthesis types MIDI devices are more flexible in the type of real-time control available but less general in terms of the variety of sound qualities that can be reproduced.

Sound events arise from action, in fact, from the transfer of energy to a sounding object. The auditory system provides us with perceptual characterizations of the energy transfer and of the internal structure oft he objects involved. Sound as another dimension of interaction has been utilized in user interfaces (1) to symbolize objects, (2) to draw attention to alerts, (3) to characterize objects' attributes, (4) to emphasize timing of events.

Currently, collision sounds are used to demonstrate auditory events in virtual environments. The potential collision of two objects can be predicted by observing their paths, but it is the sound of the collision that best reveals how the structure of the objects has been affected by the collision.

To investigate how to generate collision sounds by using physically based models, a uniform beam was chosen as an example structure. The reason is that the vibrational mechanics theory of beam structures has been examined carefully and can provide a solid groundwork for collision sound synthesis. The collision sound synthesis is decomposed into two parts: excitation , which initiates the impact event, and resonation in which the interesting vibration phenomena take place.

The excitation module is affected by the force, position, and duration of impact; and the resonator module is determined by the structure boundary conditions, material density, modulus of elasticity, and object geometry(e.g. length, width, and height). Because a uniform beam has a simple structure, we can derive the equations to depict its major vibrational modes, and calculate the natural resonant frequency associated with each mode. The natural resonant frequency reveals the strong linkage between material types, object shapes, and can show objects' attributes. Currently, the Core Testbed sound server can generate collision sounds for uniform beams with different materials, such as aluminum, bronze, cedar, pine, and Douglas fir.

From Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., and Reid, B. (1995). Virtual environment technology for training: Core testbed, (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 18-21.

14DIS CAPABILITY
A DIS-capable software library has been installed on the Core Testbed. While no VETT applications currently use this package, several small-scale experiments have demonstrated that the Core Testbed can successfully operate in a DIS environment.

From Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., and Reid, B. (1995). Virtual environment technology for training: Core testbed, (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL, p. 21.

15BBN Hark Voice Recognition Software
Speech recognition software is an important component of the logical and physical interfaces. Recognition of speech should:

· Be independent of speaker;

· achieve a 90% or better recognition rate;

· recognize the spoken input inlets than two seconds; and

· be insensitive to background noise.

The first requirement is met by the HARK speech recognition system which was purchased from BBN for VE applications. Informal tests of the HARK system in demonstration circumstances have verified this claim, as the system has worked well for a wide range of male and female users, even those with moderate foreign accents. To reduce background noise a Sennheiser 15 KHz directional noise-canceling headset microphone is used as the hardware voice input channel. The microphone is mounted on the left side of the HMD.

The HARK system uses a built-in dictionary of 100,000 words to enable recognition of the application-specific phrases specified in a user-defined grammar file. The format of this grammar file is similar to Backus-Naur form (BNF) which uses production rules to produce correct statements. These rules are encoded in top-down fashion using combinations of nonterminals (lower-case terms representing a group of words or phrases) and terminals (actual spoken words).

The HARK system uses Hidden Markov Models, essentially finite state machines with probabilities on the transitions, to match acoustic and phonetic input to a set of standard phonemes.Then, compiled information about the restricted set of phrases encoded in the grammar file is used to pick the phrase in the grammar most closely matching the voice command. The first requirement of speaker-independence is met by the HARK system in that no pre-trial voice training is needed; the built-in HARK dictionary contains the spellings and pronunciations of 100,000 words, enabling it to compute phoneme information for a particular grammar during compilation. The recognition accuracy and time vary depending on the size and complexity of the grammar file. Except in rare cases, the HARK system has exhibited 90\% or better recognition rate in demonstration circumstances. Overall time between the last spoken syllable and the first syllable of a pre-recorded response averages to about 1 second, with a maximum of 2 seconds, depending on the command.

The output of the speech recognition software is a string of recognized text, including any tag numbers contained in the words. Additional application-specific processing is needed to actually interpret the command into an action.

From Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., and Reid, B. (1995). Virtual environment technology for training: Core testbed, (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 21-22.

16SGI Performer Graphics Software
The simulation uses a Silicon Graphics Onyx workstation to render the graphics scene, which is displayed in a 646 x 486 window on a color monitor and piped to the HMD via an RGB video connection. If desired, additional RGB cabling enables external viewing of the scene through the large-screen projection system. Initially, 3D software system was installed on the Core testbed (Chen & Zeltzer, 1992) . The 3D system is an interpreted scripting language for rapid prototyping of virtual worlds, built using the Tool Command Language TCL (Ousterhout, 1990) and compiled GL graphics calls. It provides high-level graphics operations such as multiple instances from a single polygonal input file, any affine transformation, and viewpoint control. The 3D system provided a flexible, procedural, rapid development environment for early work on the Core Testbed, but as the scenes became more complex the frame rate dropped as low as 6 Hz., well below the requirements. This led to are implementation of the graphics code using Performer, a library of special graphics commands embedded into C/C++ on Silicon Graphics machines. Although the Performer development environment operates at a lower level than 3D, thus lengthening the development time, it is able to run at much faster speeds and offers additional built-in functionality such as control of time of day, fog, and other effects.

From Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., and Reid, B. (1995). Virtual environment technology for training: Core testbed, (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL, p. 22.

17VWB APPARATUS
The VWB is constructed about a framework of 1" aluminum pipe (see Figure 7). The piping is assembled using adjustable fittings to accommodate both changes in equipment configuration and variations in user anatomy. This mounting technique also provides a solid mechanical ground for haptic "force-feedback" devices, and includes a self-contained rack-mount area for control equipment. Lockable wheels allow the VWB to be easily moved to various laboratory areas as needed.

[image: image13.jpg]CRT Monitor,

N
Z
/)
O o)
Mirror
(] s,
b N 0
0 PHANTOM rmage of ".\

(@)

CRT Monitor

In the current version of the VWB, we have installed a 21” diagonal, multi-sync, RGB monitor. This unit offers workstation-class resolution of 1280x1024 (compatible with the console output of the SGI Onyx). A distribution amplifier has been added at the Onyx in order to serve four physically separated work areas. Thus, the VWB can be driven as a true front-end to the Testbed. This connectivity requires only access to the Ethernet (through which the various Testbed servers communicate) in addition to the distributed console video signal.

Figure 7. Frame of Virtual Workbench, side view

The Virtual Workbench is designed around the "Speed-Rail" system of adjustable fittings and 1" aluminum pipe, allowing easy reconfiguration as the equipment disposition evolves.

A StereoGraphics, CrystalEyes field-sequential display option has been included in the VWB in order to provide a 3-dimensional field that matches the 3-d capabilities of the haptic interface device. This system requires only that the user wear a pair of lightweight liquid crystal shutter glasses which respond to synchronization signals provided by the CrystalEyes infrared transmitter unit. Although the display can be used to good effect without this stereo enhancement (when displaying flat surfaces such as flat boards or maps), the addition of stereo allows the production of images that appear in the space in front of and behind the actual plane of the CRT. The effect (especially when viewed with the proper baffling and light control material to obscure the edges of the monitor cabinet) is that of a compelling presence of 3-d objects. This sense is heightened through the use of a 45° mirror arrangement, allowing the user to physically reach into the presented virtual space (see Figure 8).

[image: image14.jpg]R
4.4

R
4

4
S

Figure 8. VWB Prototype

The Virtual Workbench System is based on a CrystalEyes Field-sequential Stereographic color 21" display (viewed through a 45° mirror). Manual interaction with the virtual objects is mediated through a SensAble Devices PHANToM Force-feedback manipulandum.

The SensAble Devices "PHANToM" haptic interface device is a high resolution, 3-dimensional manipulandum, capable of imparting forces to the user’s fingers in response to interactions with virtual objects. The PHANToM work-volume is located coincidently with the visual space below the 45° mirror. In this way, the user can manipulate virtual objects presented in the workspace through natural bidirectional kinesthetic interaction, i.e. the user feels (and sees) the virtual objects that he or she is manipulating in the virtual space.

Because of the stringent temporal requirements of the local servo-loops by which the PHANToM is operated, a local controller computer acts as a "haptics server," posting and receiving information about all modalities represented in the VE through the standardized VETTnet Blackboard interface protocol. This controller, as well as the power supply and servo amp circuitry, are mounted in the built-in rack mount space provided on the workbench.

A pair of amplified stereo speakers are mounted on either side of the haptic workspace, below the mirror. This location allows the auditory imagery to appear in a "stereo-panorama" in the virtual space, without resorting to specialized spatialization processors. The sound source can be either local (from a wave-table playback card located in the haptics controller computer), or for more elaborate modeling of virtual auditory stimuli, the stereo audio signals can be run directly from the sound server of the Testbed (SGI Indigo) to the line level inputs of the amplified speakers.

In order to take advantage of the rigidly-fixed relation between the visual and haptics spaces, we have included a means of characterizing and adjusting the registration of the visual, haptic, and physical spaces at the workbench. This calibration is accomplished through the use of a semi-silvered mirror. The light-absorbing backing plate normally attached to the 45° mirror (used to reflect a virtual image of the video display screen into the haptics space as described above) is removed for the calibration process, and an auxiliary light source is used to illuminate the PHANToM’s end effector. The calibration procedure involves physical measurements of the end effector’s position at various test points within the working volume of the device. A corrective transform based on these physical measurements is then determined so that the position values reported by the PHANToM can be made to more perfectly correspond to the position of the end effector in real space.

The calibration then proceeds with a determination of the spatial errors existing in the 3-dimensional visual display. Using a test jig to physically delineate test points at various depths from the plane of the CRT, the user adjusts the depth parameters until a stereographically displayed point coincides with the physical test point. Once this depth tuning is performed, further calibration of the visual and haptics space proceeds straightforwardly by using the previously calibrated PHANToM as a measuring device. Images of test points are presented at various target locations throughout the visual space. The user simply moves the end effector (visible through the semi-silvered mirror) to coincide with the observed position in the visual display. In this way, the deviations of the display from the perceived positions in real space are measured, and the corrective transform is further fine-tuned.

Empirical verification of these procedures has been extended into a set of perceptual experiments such as those described in the section entitled Depth perception on the VWB (with main focus on stereopsis).

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 40-44.

18VWB BACKGROUND

Current state-of-the-art of head mounted display (HMD) technology is inadequate for many training tasks (Wiegand, 1994e). Considerations of field of view vs. resolution, user comfort, and general ergonomics, compounded by the limitations of today’s head tracking systems, limit the use of this display methodology for extended training sessions or for tasks in which perceptual stability and freedom from the sopite syndrome are essential. Moreover, the rate of development of this technology is not keeping pace with improvements in other areas of VE interfacing. In order to accommodate these realities in accomplishing the goals of the VETT program, we have surveyed alternative display techniques that may be better suited to the needs of particular VETT tasks. The first alternative considered is that of a miniature CRT or LCD projection system using a retro-reflective conical screen that fits over the head in "hair-dryer" fashion. This system is now being further examined by other agencies.

The second alternative display system is the so-called "Virtual Workbench" (VWB), consisting of a collection of interface devices (visual, auditory, & haptic) mounted on an adjustable aluminum framework. The user, seated at the VWB, sees a 3-dimensional world that begins at average reading distance and extends to arbitrary distances away, manipulates a haptic world that appears to exist within arm’s reach, and hears sounds emanating from loudspeakers mounted within the haptics space (a sort of hard-wired spatialization) (Wiegand, 1994c). While such an arrangement addresses most of the shortcomings of the conventional HMD approach, it does not allow the user to move his or her head to arbitrary positions in the VE. The interaction with the virtual world is limited to essentially one viewpoint: that of the seated straight-ahead view, with haptics provided in a volume corresponding to a real workbench. Different views of objects in this workspace can, of course, be obtained by translating and rotating these objects.

In exchange for sacrificing free head motion, the VWB provides us with a system that produces rock-steady VEs. In particular, one of the greatest limitations to the sense of presence in HMD systems, a jittery delayed response to head motions, is eliminated. Also, the VWB system is non-encumbering and is therefore conducive to long hours of use without fatigue. Furthermore, the resolution of the video display is not limited by the severe optical, size, and weight constraints present in HMD systems. Finally, the improved spatial registration between the visual image and the haptic image eliminates the need to adapt to spatial displacements between these two types of images. Although the VWB approach is not appropriate for all tasks, it provides an important alternative "front-end" for use in the SGI Onyx-based testbed; it is a practical solution to tasks that heavily involve near-field manipulation (e.g. manual training tasks, cognitive tasks, control tasks) or require precise and stable registration of the visual, auditory, and haptic modalities (e.g. sensorimotor and haptic psychophysics).

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 39-40.

19VWB APPLICATIONS
The primary applications for the VWB front-end to the Testbed are those that involve near-field interaction (Wiegand, 1993, 1994b, 1994d; Sachtler, Wies, & Wiegand, 1995). Training scenarios such as the Electronics Training Task, Cockpit/Control Panel Training, Ordnance Disposal Training, and Cartographic Training can make use of the VWB’s superior near-field fidelity, haptics registration, or both. A collection of more basic, cognitive and psychophysical tasks are also appropriate candidates for VWB technology, and are in the planning stage. Examples of these latter tasks include VETT research areas such as control panel evaluation, haptic illusions, sensory enhancement, and exploration of the effects of visual-motor re-mappings (corresponding to distortions present in various VE systems).

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, p. 44.

20RECONFIGURABLE VE SYSTEMS
What are We Trying to Reconfigure?

A common approach in computer hardware and software engineering is to describe systems according to various partitioning schemes, or at multiple levels of abstraction, and to look at the capabilities and constraints within each partition or level of detail. A good example of partitioning into levels is the multi-layered international standard for switched network communication, that consists of seven hierarchical layers and the functions and protocols defined at each layer (Bocker, 1987, pp. 11-12):

12.1.1 Application

12.1.2 Presentation

12.1.3 Session

12.1.4 Transport

12.1.5 Network

12.1.6 Data Link

12.1.7 Physical Connection

Different classes of users also bring varying perspectives to bear, and consequently may have different requirements. In general, there are end-users (i.e., trainees and experimental subjects)and developers, each of whom require different interfaces and different kinds of "reconfigurability".

Therefore, when discussing reconfigurable VE systems, the first questions to be asked are "What are we trying to reconfigure, and for whom?" More specifically, a VE system can be partitioned into a set of layered components, starting from the physical hardware, and extending to the application to be presented to end-users. Each layer can be analyzed to determine the potential for, and the constraints on reconfiguration. In this way, the notion of a "reconfigurable VE system" will be better understood, which will facilitate the design, implementation and maintenance of such a system.

For purposes of this discussion, developers will be those who program at one or more levels, and end-users are those who experience and use the application packages. Researchers from other laboratories who may wish to use the Core Testbed to develop VE-based experiments will not be considered as end-users, however. This is because non-expert developers of sophisticated VE applications will require intelligent databases, browsers and authoring tools, all of which are significant projects not supported by the VETT research effort.

Finally, reconfigurability requirements should be distinguished from the system specifications needed to support reconfigurability. Such reconfigurability requirements might include the need to support various interface devices or the ability to develop varying training applications. Requirements, in general, are developed and defined by customers or system end-users, often in collaboration with software and hardware specialists. Once system requirements are well understood, hardware and software specifications to support those requirements can be developed. The purpose of this section is not to discuss VE reconfigurability requirements, but to propose a partitioning of VE systems so that we can specify the hardware and software needed to support reconfigurability in its various guises.

Five-Layer Partitioning

For purposes of this discussion, a VE system is composed of the following 5 layers:

· Physical (P)

· Operating System (O/S)

· Device Protocol (DP)

· Application Development (AppD)

· Application (App)

Clearly, there will be some overlap between layers, and some may choose a different ordering. For example, one might argue that since the choice of physical interface devices might influence the choice of operating system, that the ordering of the O/S and DP layers should be reversed. Such considerations, however, are not material to this discussion, in which the component layers will be enumerated, and the notion of "reconfiguration" at each layer will be discussed.

Layer P: The Physical Layer

At this lowest level, computer systems, physical interface devices (i.e., sensors and displays), communications media (e.g., fiber-optic or co-ax ethernet, serial lines, data bus extenders, etc.), and physical plant characteristics (e.g., electrical power, heating and cooling, etc.) are specified.

Layer O/S: The Operating System Layer

Several factors govern the choice of O/S on a given platform, including support for realtime programming and operations, the number and quality of programming languages and program development tools available, and support for various communication protocols.

Layer DP: The Device Protocol Layer

Devices were selected at the P layer; here the concern is with functional specifications. For example, what are the bandwidth characteristics of a given device and what software communication protocols will be required to support it? Are the necessary device drivers available?

Layer AppD: The Application Development Layer

The AppD layer consists of the available software development tools, e.g., SGI CASEvision, Performer, and "homegrown" software systems such as 3D . While one might include the available suite of text editors, programming languages and debuggers supplied by the vendor as part of the AppD layer, it is VE-specific software development tools that are of particular interest here.

Layer App: Application Layer

The App layer then consists of the developed software modules that comprise the application programs presented to end-users.

Table 1

VE System Layers

System Layer
Components

Physical (P)
Computing, communication and interface devices

Operating System (O/S)
IRIX, UNIX, Linux, etc.

Device Protocol (DP)
Device bandwidth, communication protocols, e.g., TCP/IP, UDP, ATM

Application Development (AppD)
VE application programming environment, e.g., 3D, World Toolkit, dVIS

Application (App)
Virtual world design and implementation using AppD tools, and (possibly) external modelers

Reconfiguration Layer by Layer

P

Reconfiguration at Layer P consists of changing computing and interface devices, or altering characteristics of such devices. One can certainly reconfigure a system at Layer P, but this requires physically handling hardware, cables, furniture, etc.

It almost goes without saying that the choices made at the P level strongly influence the kinds of applications that can be developed and supported at the AppD and App levels. For example, the number of computing platforms determines the number of network nodes that are available for local "multi-player" simulations. Similarly, if no motion base systems are provided, then, obviously, no applications that require whole- body motion can be implemented.

Ideally, one would like to have a taxonomy or some other classification scheme that, for each class of interface devices, describes the categories of applications that each class of devices enables. Such schemes, however, are notoriously difficult to specify objectively, and thus usually fail to become widely accepted. In addition, they require periodic revisions and modifications as technology and user communities evolve. Finally, in many cases it is not possible, even in principle, to enumerate, to some useful level of detail, the activities that a device may support. For example, asking "What can we do with a DataGlave?" is almost like asking "What can I do with my hands?"

The VETT Core Testbed can support various interface devices, reconfigurability at Layer P is facilitated by providing patch panels and various switching devices to minimize device handling and re-cabling when devices are physically added or removed from the VETT Core Testbed.

O/S

Given the choice of SGI computing platforms for VETT VE development efforts, the choice of operating system is restricted to O/S software supplied by SGI. There is some room for reconfiguration here, for example, enhancing the realtime performance of the O/S. In general, reconfiguration at the O/S layer is a costly, time-consuming, programming-intensive task.

DP

The Core Testbed supports reconfigurability at the DP layer through the use of the blackboard loosely-coupled, global data sharing communication protocol (Aviles, Harmon et al. 1985) , and by a modular, event-driven device handling technique. These are essentially communication tools that facilitate a modular approach to interface device handling, and which then make it possible to add or remove interface devices from the Core Testbed, or modify their apparent realtime performance.

AppD

Software at the AppD layer provides a programming environment for developing VE applications. The package used in the VETT Core Testbed is the 3D system developed at MIT which was developed precisely to support rapid prototyping of VE systems (Chen & Zeltzer, 1992). However, since the development of 3D , SGI has released software, such as the Performer package, which provides enhanced graphics throughput in addition to access to shared memory, among other features. Therefore, the Core Testbed is being reconfigured at the AppD layer to take advantage of the improved performance available.

A further level of abstraction which can be implemented in the AppD layer, but which is currently not supported by the Core Testbed, involves the well-known technique of defining classes of logical input and output devices (Foley et al., 1990). Examples of such classes might include devices which sense spatial orientation, or devices which display force. In earlier work, it was shown how to define logical devices for whole-hand input devices, such as DataGloves (Sturman et al., 1989). Such a methodology would, of course, lessen the programming required in order to integrate I/O devices into the Core Testbed

Like reconfiguration at the O/S level, reconfiguration at the AppD level--that is, changing the available software development tools--may be costly, time-consuming, and programming-intensive.

App

The Core Testbed supports rapid prototyping of VE interfaces; modeling virtual worlds remains a labor-intensive business, however. One approach is to construct a large, intelligent data base over time which contains many kinds of generic models. An authoring system could then be designed to allow non-expert users to develop VEs based on replication and modification of generic models. This is a research effort not currently supported by the VETT effort.

At the App level, reconfiguration is a programming task which must be conducted by domain experts and programmers familiar with the VETT Core Testbed. Prototyping a completely new application probably would require some days or weeks of development effort, depending on the complexity of the models required, and the quality of the AppD programming environment.

Once a new application is programmed, however, reconfiguration amounts to loading and running different App software. AppD software (e.g. 3D or its successor) already allows App software to communicate or not with available interface devices, that is, device hardware "plugged in" at the P layer, and brought on-line with software at the DP layer.

Reconfiguration Summary

The VETT Core Testbed is currently reconfigurable at multiple levels. Perhaps the most interesting reconfigurations occur at:

· The P & DP levels as various interface devices are removed from the Core Testbed or brought on-line; and

· the App level, as VE training applications are modified or new ones are designed and implemented.

Reconfiguration at the App level can occur rather quickly (hours or days) unless a large modeling effort is required to represent some new virtual world. Modeling and world building for complex virtual worlds is widely acknowledged to be a challenging and expensive process (Brooks, 1986) that vendors and researchers alike are addressing with such techniques as persistent object-oriented data-bases and object-oriented programming environments. Rapid prototyping by non-programmers of complex VEs will require a large investment in VE design infrastructure, including intelligent data bases and data base browsers, as well as authoring and visualization tools.

The reader is reminded that, in general, software development remains a difficult and demanding process that is far from completely understood. Design and development of virtual environments is a special case of software development, with special kinds of modeling and interaction requirements, among others. A number of vendors and university laboratories offer a variety of software systems and toolkits, but just as no single programming language or development environment is likely to emerge as "the answer" to the "software crisis", VE development is likely to require a variety of tools and system support functions. The success or failure of such tools and supporting software depends on a correct and appropriate understanding of the software development process, especially as it relates to VE development. The Core Testbed research team is currently conducting a design review of 3D and Performer, which includes this kind of analysis.

From Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., and Reid, B. (1995). Virtual environment technology for training: Core testbed, (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 31-36.

[image: image15.jpg]Piloting Team/

21OOD Placement and Task
Figure 3. Placement of OOD and Piloting Team within Vessel

During harbor navigation, the OOD is stationed on the conning tower. The OOD communicates with members of the piloting team, and gives steering and speed commands to the helmsman.

[image: image16.jpg]R N L L s

L L L]

LTS

TR

ngemarkers

\\\\\\\\\\\\\\\\\

AVVNNRN

\\\

Figure 4. Map of Channel to be Navigated

The OOD’s task in large measure is to verify the course of the ship as it negotiates the marked channel, in part using navigation aids such as buoys, which mark the channel boundaries, and rangemarkers, which are used to align the vessel with the channel centerline.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, p. 16.

22Structure of the OOD Simulation
The OOD simulation makes use of the following devices available on the testbed:

· VR4 Helmet Mounted Display

· FASTRAK position tracker

· SampleCell II, (on Mac)

· BEACHTRON Spatializer, (on 486 PC)

· HARK speech recognition package (on Indy)

· SGI Onyx-2 with RE2 Reality Engine . . .

. . . The testbed team has written software modules for the submarine dynamics, graphics rendering of objects in the environmental database, and inter-process communication. Additional software has been created for (1) a developer’s interface and (2) an experimenter’s interface (EI) for controlling conditions and recording data during experiments. [Refer to endnotes for a detailed discussion of the EI].

The two major software components of the OOD simulation are the dynamics process, implemented in C++, which effects the appropriate vehicular response to the given command; and the graphics process, implemented in C using SGI’s Performer software, which renders the terrain, navaids, and watercraft databases, and maintains the appropriate view based on the direction in which the trainee is looking. These two main components are supported by the EI, as well as several secondary processes that are mostly lower-level interfaces to the commercial hardware devices or software packages. One such process is the speech recognition process, which takes in a string of spoken text from the OOD, parses it, and plays the appropriate pre-recorded audio output file to simulate the helmsman’s response. In addition, this process encodes the command numerically and sends it across the network to either the dynamics process (for submarine steering commands) or the graphics process (for commands directly affecting the viewing mode). Another task-specific component is the process that spatializes the sounds of the two nearest buoys, given their locations and the position and orientation of the trainee’s head.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp.18-19.

23FUNCTIONAL INTERFACE OF THE OOD
Based on a task analysis of the in-harbor navigation task, the functional interface provides a means for the trainee to interact with the VE using natural input modalities including speech and body movements. The functional interface also manages the system’s responses to the user’s input, which may be conveyed in a range of modalities, including video, sound, and speech. The task analysis -- used both for designing the functional interface, as well as for developing the requirements and specifications basic to validation and verification -- is described in more detail in [the Task Analysis24 section].

In the physical world the OOD, from a position at the top of the surfaced submarine, has a relatively unimpeded view of the physical environment and portions of the submarine itself, e.g., the OOD can view a portion of the rudder and confirm that it is oriented correctly in accordance with the most recent steering command. Therefore, the visual interface for OOD 1.0 requires a 360° panoramic "bridge view" with as wide a field of view as possible. The OOD communicates by voice with the piloting team, as well as with the helmsman, so that the only displays needed are visual (for the "bridge view") and audio. In OOD 1.0 the primary input mode is speech, which is used both for commanding the helmsman and for invoking various physical aids such as the virtual chart and the 10x electronic binoculars.

Continuous audio through the headphones is provided to convey the sound of the ocean waves against the hull of the sub and the ringing of the two nearest buoys. The buoy sounds are part of another feedback loop that modulates the volume and spatial direction of the sounds according to the sub’s position and the user’s head orientation relative to the two nearest buoys.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp.19-20.

24TASK ANALYSIS

In any training system, VE or otherwise, an accurate task analysis is crucial to the requirements generation and subsequent implementation. Any misrepresentation or omission of task components could lead to negative training transfer.

In the case of the OOD task, a modular hierarchical format using flowchart diagrams was adopted. Each major flowchart describes a particular task element of the OOD, while individual action boxes within the flowchart could be expanded into another flowchart describing an action or subtask in more detail.

Before discussing the OOD task per se, a description of the physical surroundings in the surface environment of the OOD is in order. From the conning tower, the OOD’s view is virtually unimpeded in all directions, unlike the navigation team below deck which has no external view at all save for the periscope with its extremely limited field of view. The OOD must keep the submarine inside a narrow channel marked by buoys on either side. For an inbound scenario the buoys are colored red on the right and green on the left. The two other chief navigational aids are range markers, tower-like structures that are used in pairs to align the boat with the centerline of the channel, and turning aids, which are used to mark the timing of a turn from one segment of the channel to the next. Leaning directions and the orientation of wakes on the buoys and other floating navaids help give visual cues as to the direction of water currents, which can have a profound effect on the sub’s heading. Furthermore, the harbor may contain an abundance of civilian watercraft, which must be monitored carefully to avoid potential collisions.

Now let us consider the harbor navigation task. Three mutually exclusive task elements, or subtask phases, make up the task the OOD must perform.

The initial prototype of the OOD simulation uses a model of King’s Bay, GA. In this version all three sequential task phases (centerline alignment, turning aid identification, & turn execution) have been included, as well as the necessary navigational aids such as buoys, range markers, and turning aids. Collision with navaids is not explicitly detected by the system, but is discouraged in training sessions, hence trainees are aware of that aspect of the task. External water traffic are all currently fixed at safe positions outside the harbor channel, but later versions may give them pre-scripted movements and interactions with the OOD’s vessel. Water currents have only recently been added.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 23-24.

25LEVEL OF DETAIL

In early stages of prototyping, there is a driving tendency to set the overall fidelity requirements at a minimum to speed development. However, we contend that while this may be a useful rule-of-thumb, it risks overlooking details that, however tedious, are necessary for the task elements being considered. Each object must be carefully examined to determine which features directly support performance of the task and are therefore essential for training effectiveness, and which features are secondary or even irrelevant. Furthermore, level of detail requirements on such features should be stated in functional or operational terms of the function or purpose, rather than a hard listing of measurements or specifications.

It is not necessary to account for every behavior performed by an OOD during the harbor navigation task, since, from a training standpoint, the vast majority of these actions are irrelevant to the task being trained, and hence add no value to the simulation. In the same way, low-level actions that are necessary in the real world to carry out a subtask but are not in themselves directly important to the overall task may be omitted, especially if their inclusion would incur significant additional equipment or programming overhead to the prototype. For instance, after turning out of each channel segment, the OOD typically crosses out the corresponding row on the course card with a pencil. Simulating the haptic or gestural interactions with a virtual pencil would require the use of a DataGlove or force-feedback device, but it is only the end result of marking the new place on the course card that matters to the task. Hence in OOD 1.0 a verbal command is used for this purpose. The goal here is to concentrate on task level interactions that are important for training effectiveness in the particular task.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 24-25.

26INPUT/OUTPUT MODES

Next, the requirements for the VE’s functional interface must be determined. Information from the task analysis will again be helpful here, providing answers about how the person receives sensory information about the environment, how the person communicates with other participants in the task, and how external aids are used.

In the OOD task, most information is received visually by observing the current configuration of shoreline and navaids relative to the sub. Occasionally, verbal course information is sent by the chief navigator, and spoken acknowledgments of the OOD’s commands are given by the helmsman. However, the OOD must be able to independently confirm the suggestions of the piloting team, and in addition, must be trained to perform this task independent of the piloting team in the event of on-board communication problems. Therefore, in the VE, the primary mode of output to the trainee is visual imagery, and spoken output to the trainee is secondary.

On the other hand, the OOD is only able to have an effect on the environment through a well-defined set of verbal commands that are issued to the helmsman. The implications for the VE system, then, are that the primary mode of input from the trainee is speech, which requires a speech recognition system and a limited amount of natural language understanding. Finally, tracking the head movements of the trainee is necessary to update the visual display from the appropriate point of view.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, p. 25.

27PERFORMER LIBRARY

The graphics assessment and programming began with familiarization with the SGI Performer library, as well as the 3D library (Chen & Zeltzer, 1992) that was used for the original implementation of the testbed graphics. The 3D library is a fast-prototyping environment developed at MIT that provides an interpretive front-end to various graphics platforms. This is a productive environment for students, and the question of whether to extend 3D to include the Performer library was addressed.

The graphics for the OOD program are displayed on a SGI Onyx with two processors and a Reality Engine2. These hardware features provide efficient texture mapping, anti-aliasing and stenciling that can be accessed conveniently through Performer. Since Performer is a high-level language designed for real time simulation, it also provides efficient use of multiple CPUs. Given these advantages, it was clear that the graphics should be done using Performer and that access to Performer should not be embedded in 3D. The first issue was speed. The TCL interpreter used by 3D would slow down the graphics. Also, support of 3D would have to be provided in an ongoing manner if the Navy were using programs written in 3D and developing code in 3D. In addition, it was felt that other development environments were more conducive to enforcing structure on large bodies of code maintained by several programmers. (Updating 3D to run with some of the higher performance interpreters with structured libraries is seen to be an endeavor that may be useful to pursue in the future outside of the VETT program.)

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, p. 28.

28Dvise, Dvs and Vega

Commercial software products built around the Performer library were investigated, specifically, Division's development environment (Dvise, Dvs) and Paradigm's Vega package. Although some supported software package of this type is recommended for use by the Navy to support and develop its training systems, it was felt that such expensive packages were not needed to explore training on the MIT testbed. In addition to the cost problem, it was felt that these packages required a significant learning period not necessarily available to students working on the project. Also, the mapping of Performer code into one of the packages is seen as straightforward. Vega with the marine package and audio engine seemed most suited to the OOD program; however, the OOD program could also easily be converted to the Division environment, an environment that might be more suitable when various training tasks are considered. In the meantime, the OOD graphics were implemented in Performer and the existing graphics were converted and enhanced as requested by BBN in preparation for pilot experiments. It should also be noted that neither the 3D environment nor a commercial simulation package seemed capable of eliminating the need for additional programming as the "experimenter" tested what features were important in a simulation for training an OOD.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, pp. 28-29.

29Non-Graphics Software

One of the major constraints on the update rate of the graphics is related to the communication bottleneck produced by the VETTnet Blackboard. Experimentation showed that the best rate for complete accuracy of data transmission was often as bad as 1 Hz. Significant effort was made to repair the blackboard, until a commercially available package, ToolTalk, was discovered to be appropriate. (At the time of this writing, this package has yet to be fully evaluated on the testbed system.) With these modifications, OOD 1.0 runs at about a 15 Hz visual update rate with a transport delay of approximately 110 msec, or about 1/9 second. Since there are no rapidly moving objects or vehicles in the simulation, this has not presented any difficulties. However, there is reason to believe this latency can be further reduced somewhat by certain code optimizations and by making use of level-of-detail modeling.

From Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., and Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL, p. 29.

REFERENCES

Aviles, W. A., Harmon, S.Y., Gage, D.W., et al. (1985). An architecture for the coordination and control of complex robotic subsystems. Proceedings of the Conference on Intelligent Systems and Machines, 40-46.

Blinn, J. F. (1982). Systems aspects of computer image synthesis. Proceedings of the ACM SIGGRAPH '82 Course Notes, Seminar on Three Dimensional Computer Animation, Boston, MA.

Bocker, P. (1987). ISDN: The Integrated Services Digital Network, Berlin, Springer- Verlag.

Brooks, F. P. (1986). Walkthrough: A dynamic graphics system for simulating virtual buildings. Proceedings of the 1986 ACM Workshop on Interactive 3D Graphics, Chapel Hill, NC, October 1986, 9-21.
Carlson, W. (1982). An advanced data generation system for use in complex object synthesis for computer display. Proceedings of the Graphics Interface 82, Toronto, Canada, May 1982, 197-204.

Chen, D. T., & Zeltzer, D. (1992). The 3d Virtual Environment and Dynamic Simulation System. Computer Graphics and Animation Group, August 1992, MIT Media Lab, Cambridge, MA.

Crow, F. C. (1982). A more flexible image generation environment. Proceedings of the ACM SIGGRAPH 82, Boston, MA, 9-18.

Denavit, J., & Hartenberg, R.B. (1955). A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics, 23, 215- 221.

Durlach, N.I., Wiegand, T.E.v., Zeltzer, D., Srinivasan, M., Salisbury, K., Brock, D., Sachtler, W.B., Pfautz, J., Schloerb, D., & Lathan, C. (1996). Virtual environment technology for training (VETT): Annual report for MIT work performed during year 2 (Contract no. 94-C-0087). Prepared for Naval Air Warfare Center Training Systems Division, Orlando, FL.

Esposito, C. (1993). Virtual reality: Perspectives, applications and architecture. In L. Bass & P. Dewan, (Eds.), User Interface Software (pp. 103-127). Chichester, England: John Wiley & Sons.

Foley, J. D., van Dam, A., Feiner, S.K., et al. (1990). Computer Graphics: Principles and Practice. Addison-Wesley.

Gomez, J.E. (1984). Twixt: A 3-D animation system. Proceedings of the Eurographics '84, September, 1984.
Gomez, J., MacDougal, P., & Zeltzer, D. (1984). A tool set for 3-D computer animation. Proceedings of the ACM Siggraph 94, Course Notes, Introduction to Computer Animation, Minneapolis, MN.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8 (3), 231-274.

Harel, D., Lachover, H., Naamad, A., et al. (1988). STATEMATE: A working environment for the development of complex reactive systems. Proceedings of the 10th International Conference on Software Engineering, Singapore, April 1988, 396-406.

MacDougal, P. D. (1984). Generation and management of object description hierarchies for the simplification of image generation. Ph.D thesis, Ohio State University, Columbus.

Nadas, T., & Fournier, A. (1987). GRAPE: An environment to build display processes. Proceedings of the ACM SIGGRAPH 87, Anaheim, CA, 75-84.

Ousterhout, J. K. (1990). Tcl: An embeddable command language. Proceedings of the 1990 Winter USENIX Conference.

Pieper, S. (1991). CAPS: Computer-aided plastic surgery. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge.

Potmesil, M., & Hoffert, E.M. (1987). FRAMES: Software tools for modeling, rendering and animation of 3D scenes. Proceedings of the ACM SIGGRAPH 87, Anaheim, CA, 85-94.

Sachtler, W.L., Wies, E., & Wiegand, T.E.v. (1995). The virtual eyeball: Proof-of-concept application software for the multimodal Virtual Workbench System.

Sturman, D., Zeltzer, D., & Pieper, S. (1989). Hands-on interaction with virtual environments. Proceedings of the ACM SIGGRAPH Symposium on User Interface Software and Technology, Williamsburg, VA, Nov. 13-15, 1989, 19-24.

Sturman, D., Zeltzer, D., & Pieper, S. (1989). The use of constraints in the bolio system. ACM SIGGRAPH 89 Course Notes, Implementing and Interacting with Realtime Microworlds, Boston, MA, July 31-August 4, 1989, 4:1-4:10.

Whitted, T., & Weimer, D. (1981). A software test-bed for the development of 3-D raster graphics systems, Proceedings of the ACM SIGGRAPH 81, Dallas, TX, 271-277.

Wiegand, T.E.v. (1993). VRE: Virtual rectal exam. Internal memo, VETT project at MIT/RLE.

Wiegand, T.E.v. (1994a). Proposal for an "experimenter's interface" for the VETT testbed. Internal memo, VETT project at MIT/RLE.

Wiegand, T.E.v. (1994b). MIT effort on the Fault Diagnosis Task as of the end of July 1994. Internal memo, VETT project at MIT/RLE.

Wiegand, T.E.v. (1994c). RLE Progress Report #137: 1 January to 31 December 1993.

Wiegand, T.E.v. (1994d). Some thoughts on creating an electronics troubleshooting/manual training task that utilizes the multimodal VE testbed. Internal memo, VETT project at MIT/RLE.

Wiegand, T.E.v. (1994e). The virtual workbench and the electronics training task. Internal memo, VETT project at MIT/RLE.

Zeltzer, D. (1982). Motor control techniques for figure animation. IEEE Computer Graphics and Applications, 2 (9), 53-59.

Zeltzer, D., Pieper, S., & Sturman, D.(1989). An integrated graphical simulation platform. Proceedings of the Graphics Interface '89, London, Ontario, Canada, June 19-23, 1989, 266-274.

Zeltzer, D., Aviles, W.A., Gupta, R., Lee, J.F., Nygren, E., Pfautz, J.D., Pioch, N.J., & Reid, B. (1995). Virtual environment technology for training: Core testbed. (Technical Report, contract no. 93-C-0055). Naval Air Warfare Center Training Systems Division, Orlando, FL.

PAGE
366

